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Abstract

This paper presents a methodology for automatically generating online scheduling strategies for a complex objective defined
by a machine provider. To this end, we assume independent parallel jobs and multiple identical machines. The scheduling
algorithm is based on a rule system. This rule system classifies all possible scheduling states and assigns a corresponding
scheduling strategy. Each state is described by several parameters. The rule system is established in two different ways. In
the first approach, an iterative method is applied, that assigns a standard scheduling strategy to all situation classes. Here,
the situation classes are fixed and cannot be modified. Afterwards, for each situation class, the best strategy is extracted
individually. In the second approach, a Symbiotic Evolution varies the parameter of Gaussian membership functions to
establish the different situation classes and also assigns the appropriate scheduling strategies. Finally, both rule systems will
be compared by using real workload traces and different possible complex objective functions.
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1. Introduction

In this paper, we address an online scheduling
problem with independent jobs submitted by dif-
ferent users. Unfortunately, for those problems,
most common simple scheduling objectives, like the
makespan [19], the total weighted completion [30]
or response time [44] are not sufficient to represent
the intentions of the machine provider. As example
take the scheduling of computational jobs on a par-
allel computer system. There the users typically are
partitioned into a small set of user groups which are
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assigned different priorities. Today, parallel computer
systems are increasingly part of Computational Grids,
that is, users from other sites with often low priority
use those systems as well. As the common scheduling
objectives are not suited to efficiently handle those
priorities, the machine provider often sets quotas to
prevent lower priority groups to occupy too many
resources. However, those quotas tend to reduce ma-
chine utilization significantly.

Similar problems occur in many other application
areas of practical importance, like telecommunications
and logistics. Nevertheless, we focus in this paper on
parallel computer systems as for those systems, real
trace data are available that can be used to evaluate new
approaches, see, for instance, the Standard Workload
Archive [15], described by Chapin et al. [9]. It is vital
to use real data to develop good scheduling algorithms
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as there is no method that guarantees an optimal or
almost optimal solution for all input data.

The scheduling of parallel computer systems is an
online problem as jobs are submitted over time and the
precise processing times of those jobs are frequently
not known in advance. Furthermore, information about
future jobs are usually not available [24]. Formally,
each job j is part of a job system τ and belongs to a
user group. It is characterized by its degree of paral-
lelism mj , its processing time pj , and additional cri-
teria, see Feitelson et al. [16]. During the execution
phase, job j requires the concurrent and exclusive ac-
cess to mj ≤ m processing nodes with m being the
total number of nodes on the parallel computer sys-
tem. The number of required processing nodes mj is
available at the release date rj of job j and does not
change during the execution. As the network does not
favor any subset of the nodes and all nodes of a paral-
lel computer system are either identical or very sim-
ilar, we assume that a job j can be processed on any
subset of mj nodes of the system. Note that in the rest
of this paper, we replace the expression node by ma-
chine as this is the common terminology in scheduling
problems.

As already mentioned, the processing time pj is not
known before the job has been completed. However,
some systems require the users to provide an estimate
p̄j of this processing time. If the actual processing
time of a job exceeds this estimate, the job is canceled
to protect the system and the user from the costs of
additional resource consumption by a possibly faulty
job. In addition, this estimate is also used for some
scheduling algorithms, like Backfilling [32]. Unfortu-
nately, those estimates are of limited use for schedul-
ing purposes as users tend to overestimate the process-
ing time of their jobs in order to avoid the termination
of correct jobs, see, for example, Lee et al. [31]. Most
current real installations of parallel computers do not
use preemption but let all jobs run to completion unless
they are terminated as discussed above. The comple-
tion time of job j within the schedule S is denoted by
Cj(S). Furthermore, precedence constraints between
jobs are rare and it is almost impossible for the ma-
chine owner to detect them if they exist. Hence, we
assume that all jobs are independent.

Contrary to many theoretical online scheduling
problems addressed previously, see, for instance, Al-
bers [1], the scheduling of job j does not need to

take place directly after its release date rj . Instead,
the allocation is established when sufficient machines
become available, that is just before the start of job
j at time (Cj − pj). Due to the frequency of job
submissions and the size of m for many parallel
computers, scheduling decisions must still be made
within a short period of time after the release of a job.
As information about future job submissions is not
available compute intensive quasi offline scheduling
algorithms cannot be used in this scenario.

In general, it is very difficult to optimally solve
most scheduling problems. This is even true for off-
line problems with simple scalar objective functions
as many of them are NP-hard [20]. Therefore, existing
online scheduling systems at real installations mainly
use heuristics, like Greedy Scheduling [23] in com-
bination with a First Come First Serve (FCFS) ap-
proach and the above mentioned Backfilling [32,21].
Although those algorithms produce a very low utiliza-
tion in the worst case [39] they yield reasonably good
results in practice [17]. But they do not allow different
priorities for jobs or user groups apart from exclusively
assigning computer partitions to user groups [27], lim-
iting the total processing time of a user group, or stati-
cally weighing the waiting time of jobs. All those algo-
rithms are rather cumbersome and often lead to a low
utilization as already mentioned. Recently, there have
been suggestions to consider market oriented schedul-
ing approaches [7] which accept more flexible objec-
tives and are able to adapt to variations in the job sub-
mission pattern. However, existing research projects
in this area only use two simple linear objective func-
tions: time and cost minimization [6]. So far no really
flexible scheduling algorithm has been developed for
parallel computer systems.

Within this work, we present a methodology to auto-
matically generate a rule based scheduling system that
is able to produce good quality schedules with respect
to a given complex objective. This objective defines
the prioritization of different user groups. Even if dif-
ferent providers use the same basic objectives for the
various groups the transformation of a generic multi-
objective scenario into a specific scheduling problem
with a single objective depends on the actual priorities
assigned to the user groups and is likely to be indi-
vidual. Hence, we focus on the development of a suit-
able methodology. To this end, we present a rule based
scheduling that is able to adapt to various scenarios.
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So far, the use of rule based systems in scheduling en-
vironments is rare. Nevertheless, first attempts [12,8]
have shown the feasibility of such an approach. How-
ever, those scheduling systems are all based on single
objective evaluation functions that are not optimized.

The proposed scheduling process is divided into two
steps. In the first step, the queue of waiting jobs is
reordered according to a sorting criterion. Then an al-
gorithm uses this order to schedule the jobs onto the
available machines in the second step. Based on the
present scheduling state, the rules determine the sort-
ing criterion and the scheduling algorithm. In order to
guarantee general applicability, the system classifies
all possible scheduling states. This classification con-
siders the actual schedule, the current waiting queue,
and additional external factors, like the time of day.

As already mentioned, the development of schedul-
ing strategies for parallel computers is typically based
on real workload traces. Those traces implicitly in-
clude all relevant characteristics and hidden properties,
like temporal patterns, dependencies between jobs, or
certain user behaviors. As local scheduling decisions
influence the allocation of future jobs, the effect of
a single decision cannot be determined individually.
Therefore, the whole rule base is only evaluated af-
ter the complete scheduling of all jobs belonging to
a workload trace. This has a significant influence on
the learning method to generate this rule base as this
type of evaluation prevents the application of a super-
vised learning algorithm. Instead, the reward of a de-
cision is delayed and determined by a critic. Clearly,
all potential rules compete against each other during
the training phase. But as the final scheduling system
will probably consist of many different rules, they also
need to cooperate in order to produce rule bases with
high quality. For the training, we use a genetic rein-
forcement algorithm in combination with a Symbiotic
Evolution as introduced by Juang et al. [29].

To exemplarily show the results of our approach,
we use a linear priority functions which favors user
group 1 oder over user group 2 over all other user
groups. The choice of another priority function may
lead to slightly different results but does not affect the
feasibility of our methodology. Due to the lack of a
scheduling algorithm supporting priority functions, no
priority functions are available in practice. Therefore,
we had to define one.

For the evaluation of the derived scheduling algo-

rithms, we demonstrate the distance of this schedule
from the Pareto front of all feasible schedules for this
workload. However, the generation of an approximate
Pareto front is not subject of this paper. But two re-
strictions must be noted:

(i) For real workloads, we are only able to gener-
ate approximate Pareto fronts. Therefore, sched-
ules of this front are not guaranteed to be lower
bounds.

(ii) The schedules are generated off-line. On-line
methods may not be able to achieve those results
due to the on-line constraints.

Moreover, we also show the results of the best con-
ventional strategy that does not support priorities.

The remainder of this paper is organized as follows.
In Section 2, we introduce the underlying schedul-
ing system, Evolutionary Algorithms, and Symbiotic
Evolution in more detail. The next section contains
scheduling objectives and features. Then the model of
our approach is described in Section 4. This is fol-
lowed by a detailed analysis of the system behavior
and an evaluation of the results. The paper ends with
a brief conclusion.

2. State of the Art

This section introduces classical algorithms for job
scheduling and their application within our rule based
scheduling system. Furthermore, we present the con-
cept of Evolution Strategies. Those strategies are used
to optimize the scheduling rule base during Symbiotic
Evolution. The concept of this evolution is shown at
the end of this section.

2.1. Scheduling Concepts

As already mentioned, scheduling strategies for
high performance parallel computers must pay more
attention to certain privileged users or user groups in
order to achieve a higher degree of satisfaction for
them and to support Grid computing. Unfortunately,
workload data neither contain a classification of users
nor any target objective function for the scheduling
algorithms. It is likely that most users of the same user
group show a similar job submission pattern. This is
especially true in commercial settings where high vol-
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ume customers may obtain preferential treatment. But
even in science, jobs from nuclear physicists often
resemble each other while they are typically different
from weather simulations or jobs with frequent access
to databases. Therefore, an arbitrary assignment of
users to user groups is not likely to represent reality.
Instead we base our user groups assignment on job
submission patterns.

Song et al. [42] have already shown that users at
real installations can typically be divided into 5 groups
based on their resource demands. Due to the lack of
given user membership information, we use Song’s
grouping approach to generate 5 user groups such that
user group 1 represents all users with the highest re-
source consumption whereas all users in group 5 have
a very low resource demand. Details of the user group
definitions are provided by Ernemann et al. [3].

Here, we consider only on-line systems where jobs
must at least temporarily compete for computer re-
sources. This will automatically lead to waiting jobs
that are typically ordered in form of a queue. In some
installations, a static ordering like sorting by submis-
sion time or sorting by estimated runtime is applied
while other systems dynamically reorder the wait-
ing queue depending on the system state by using a
complex sorting function. Remember that the state of
a scheduling system mainly consists of the current
schedule that describes the actual allocation of pro-
cessor nodes to certain jobs, the scheduling results
achieved so far, and the queue of waiting jobs.

The various scheduling algorithms mainly differ in
the way they select a job from the sorted waiting queue
to insert it into the existing schedule, that is, they obey
different restrictions when choosing the next job. This
results in different algorithmic complexities and corre-
spondingly different execution times for the schedul-
ing algorithms.

In the following, we present four simple scheduling
algorithms that together cover most of the algorithms
used in existing installations. Note that the first three
algorithms use a statically sorted waiting queue while
the last algorithm dynamically reorders this queue.
– First Come First Serve (FCFS) starts the first job of

the waiting queue whenever enough idle resources
are available. Hence, this algorithm has a constant
computational complexity as the scheduler only
tests whether the first job can be started if a job
in the schedule has completed its execution or if a

new job is on top of the waiting queue.
– List Scheduling as introduced by Graham [22] is

not applied in this work. However, it is the base
for the two backfilling variants. When applying List
Scheduling, the scheduler scans the queue of wait-
ing jobs in the given order until it finds the first job
for which a feasible allocation on the currently idle
resources exists. The computational complexity is
higher than in the case of FCFS as the whole queue
may be tested each time the scheduling procedure
is initiated.
· EASY Backfilling (EASY) requires that a runtime

estimation is provided for each job by its user. If
the first job of the waiting queue cannot be started
immediately, the algorithm allows an allocation
of another job if it does not delay the completion
of the first job. EASY has a higher computational
complexity than List Scheduling, as the scheduler
may need to consider the allocation of the first job.
· Conservative Backfilling (CONS) also needs

runtime estimations and extends the concept of
EASY. Here, an allocation of a job is feasible if
the completion time of no preceding job in the
waiting queue is delayed. This results in a much
higher computational complexity as in the worst
case, the expected completion time of almost all
jobs within the waiting queue must be determined
each time the scheduling process is initiated.

– Greedy Scheduling (Greedy) dynamically reorders
the waiting queue whenever it is invoked. To this
end, it uses a potentially complex sorting criterion.
After the resorting, a simple FCFS is applied. The
complexity of this algorithm is based on sorting
which may be executed frequently. Greedy allows
the specification of user or user group dependent
preferences within the sorting criterion.

2.2. Evolution Strategies

For the generation of a rule based scheduling sys-
tem, we apply Symbiotic Evolution, see Section 2.3.
This concept is generally based on Evolutionary Algo-
rithms which mimic natural evolutionary processes to
execute search and optimization procedures. Although
many different algorithms and principles have been
proposed, they usually fit into one of the following
three major classes.

4



(i) The class of Evolutionary Programming defined
by Fogel [18],

(ii) the class of Genetic Algorithms invented by
Holland [26], and

(iii) the class of Evolution Strategies explored by
Schwefel [37] and Rechenberg [35].

Here, we will discuss Evolution Strategies in more
detail as we apply them during the Symbiotic Evo-
lution to generate a rule based scheduling system in
form of a Genetic Fuzzy system. In contrast to the
majority of publications, we do not apply Genetic Al-
gorithms for the evolutionary generation of our Fuzzy
systems as our underlying scheduling system is real
value encoded and Jin et al. [28] have shown that Evo-
lution Strategies outperform Genetic Algorithms when
applied to Genetic Fuzzy systems with a real value
encoded representation. This is further supported by
Bäck and Schwefel’s comparative studies [2] on Evo-
lution Strategies and Genetic Algorithms that demon-
strated the general superiority of Evolution Strategies
for real valued parameter optimization problems. In
addition, Evolution Strategies support self adaptation
which is often helpful when exploring the structure of
the fitness landscape.

Algorithm 1 depicts the conceptual structure of a
(µ +, λ, ρ)-Evolution Strategy [4].

The algorithms initializes the first population P0

with µ individuals (oi, si), 1 ≤ i ≤ µ where oi and
si denote the sets of object and strategy parameters of
the i-th individual, respectively. The evolutionary loop
is executed until a given termination criterion, like a
fixed number of generations or a quality level within
the objective space, is satisfied. The actual generation
Pt is used to produce the new offspring generation Qt

of λ individuals by applying mutation to the parent in-
dividuals. If (ρ > 1) a new individual is breed by the
recombination of ρ randomly selected parent individu-
als and subsequent mutation. An evaluation procedure
with a predefined objective function that represents the
real problem determines the parameters of this new
offspring generation. In the comma strategy, the next
parent generation Pt+1 is selected just from the off-
spring individuals Qt while the plus strategy selects
the best individuals of both the parent and offspring
generations. All other individuals are removed from
the system. Afterwards the next loop iteration starts.

Algorithm 1 (µ +, λ, ρ)-Evolution Strategy
t← 0
P0,µ ← initialization with µ individuals
evaluation(P0,µ)
repeat

for k = 1 to λ do

Mk,ρ ← random selection of ρ
individuals (Pt,µ)

sk ← strategy recombination (Mk,ρ)
ok ← object recombination (Mk,ρ)
s̃k ← strategy mutation (sk)
õk ← object mutation (s̃k,ok)

end for
Qt,λ ← {(õk, s̃k), k = 1, . . . , λ}
evaluation(Qt,λ)
if (µ, λ)-selection then

Pt+1,µ ← select µ individuals (Qt,λ)
else if (µ + λ)-selection then

Pt+1,µ ← select µ individuals (Pt,µ ∪Qt,λ)
end if
t← t + 1

until termination condition

2.3. Symbiotic Evolution of Genetic Fuzzy Systems

There are several methods to generate rule based
scheduling systems. Here, we distinguish between as-
signing a combination of sorting criteria and schedul-
ing algorithms to feature subspaces with fixed bound-
aries and Genetic Fuzzy systems.

In our scheduling problem, neither precise knowl-
edge about the applicability of scheduling strategies
for a given scheduling situation nor training data are
available. Furthermore, individual scheduling deci-
sions can only be evaluated after all jobs have been
assigned to resources, see Section 1. Hence, a critic
can only issue the award for the assignment of a
scheduling strategy to a situation once the schedule
of the whole workload trace is complete. Finally, an
appropriate situation classification is also not known
in advance but must be determined implicitly during
the generation of the rule based scheduling system.

Many design methods for Fuzzy logic controllers
use Evolutionary Algorithms to adjust the membership
function and to define the output behavior of individ-
ual rules, see, for example, Hoffmann [25]. Among
those methods, Genetic Fuzzy systems are especially
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well suited as they do not need any training data nor
expert knowledge. All those Genetic Fuzzy systems
either encode single rules (Michigan approach [5]) or
complete rule bases (Pittsburgh approach [41]).

As already mentioned, we use a Symbiotic Evolu-
tionary Algorithm as introduced by Juang et al. [29]
to generate a Genetic Fuzzy system. The Symbiotic
Evolutionary Algorithm is based on the Michigan ap-
proach and evaluates different rules together as sev-
eral rules are needed to compose a complete rule base.
This approach does not require the definition of sev-
eral complete rule bases at the beginning of the evo-
lution. Hence, we do not need to establish a set of
well suited initial rule bases which is generally quite
difficult, see Juang et al. [29].

It has already been pointed out in Section 1, that
single rules do not only cooperate but also compete
with each other during the evolution. In order to alle-
viate this contrast, Hoffmann [25] restricts the compe-
tition of rules to subsets that trigger for similar inputs.
This restriction influences the selection of rules and
the recombination between them. The resulting rules
typically possess a higher diversity and therefore fur-
ther improve the coverage of the possible input val-
ues. Due to the better coverage this diversity often re-
duces the number of generations needed to establish
the final rule base system. Therefore, we combine the
Symbiotic Evolutionary Algorithm with Hoffmann’s
approach as the computational effort is of great im-
portance for our problem due to our time consuming
simulations of the schedule execution.

3. Scheduling Objectives and Features

As described in Section 1, we are are looking for
scheduling algorithms that optimize a given complex
objective function of a machine provider. Without loss
of generality, we assume that this complex objective
function is a combination of simple classic objective
functions that are partially restricted to the jobs of a
user group.

Further, we need features that enables us to classify
possible scheduling situations within our rule based
scheduling system. As there must be a relationship
between the scheduling objective and the feature set
those features are also defined with respect to the user

groups.
Before presenting the objectives and the features

in detail, we introduce some useful definitions and
notations.
– RCj = pj ·mj as the Resource Consumption of a

single job j,
– τ the set of all n jobs within our scheduling system,
– ξ(t) the set of already finished jobs at time t,
– π(t) the set of actual running jobs at time t, and
– ν(t) the set of waiting jobs at time t.

To represent the relation between a job and a user
group, we use function

%i(j) =

{
1 if job j belongs to user group i

0 otherwise.

3.1. Scheduling Objectives

Within this work, we use seven classical scheduling
objectives as basic blocks for the complex objective.
The first two objectives do not consider the user group
of a job.

Overall Utilization (U):

U =

∑
j∈τ

pj ·mj

m ·
(

max
j∈τ
{Cj(S)} −min

j∈τ
{Cj(S)− pj}

)
Average Weighted Response Time (AWRT) over all

jobs of all users:

AWRT =

∑
j∈τ

pj ·mj · (Cj(S)− rj)∑
j∈τ

pj ·mj

Note that the weight of a job is identical to its re-
source consumption independent of their processing
time and degree of parallelism, see Schwiegelshohn
et al. [40]. Therefore, the objectives U and AWRT are
closely related to each other. Nevertheless, we decided
to use both of them as utilization is common crite-
rion used in large installations and AWRT can easily
be restricted to a specific user group. This yields the
remaining user group specific objectives:

AWRTi =

∑
j∈τ

pj ·mj · (Cj(S)− rj) · %i(j)∑
j∈τ

pj ·mj · %i(j)
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As we have 5 user groups the complex objective
function in our system is based on the combination of
7 simple objectives.

3.2. Feature Definitions

While scheduling objectives are used to evaluate a
complete schedule, features describe the present state
of the schedule in order to enable decisions about the
next scheduling action. Note that our simple schedul-
ing objectives require the knowledge of job comple-
tion times which are not available for jobs that are
presently processed. However, those jobs should be
considered when describing the present schedule state.
Therefore, our features slightly differ from the above
presented objectives.

Before introducing those features, we define the
Slowdown (SDj) for a single job j within schedule S:

SDj =
Cj(S)− rj

pj

SDj will reach its minimum value of 1 if job j does
not wait before it starts execution. Then the release
date is identical with the job’s start time. Although,
the range of this feature is theoretically unbounded,
we can delimit it to the interval of [1,100] as values
greater than 10 occur very rarely in practice.

The feature Average Weighted Slowdown (SD) for
all already processed jobs j ∈ ξ(t) uses the same
weight definition as the objective AWRT.

SD =

∑
j∈ξ(t)

pj ·mj · (Cj(S)− rj)∑
j∈ξ(t)

p2
j ·mj

SD represents the weighted average delay of jobs
due to competition and the scheduling algorithm. Fur-
ther, this feature represents the scheduling decisions
in the past as only already finished jobs are used to
calculate this feature. Here, we have not limited the
window of the SD. In practical cases, a limitation to,
for instance, the last month may be appropriate.

The Momentary Utilization (Um) of the whole par-
allel computer at time t only considers those jobs that
are processed at this time:

Um =

∑
j∈π(t)

mj

m

The Proportional Resource Consumption of the
Waiting Queue for User Group i (PRCWQi) repre-
sents the share of this user group among the jobs in
the waiting queue:

PRCWQi =

∑
j∈ν(t)

p̄j ·mj · %i(j)∑
j∈ν(t)

p̄j ·mj

Note that the real processing time pj is unknown
for the jobs in the waiting queue. Therefore, we use
the estimated processing time p̄j instead.

Here, we have preferred simple scheduling objec-
tives and features that are frequently found in real in-
stallations of parallel systems. However, our method-
ologies are not restricted to this selection. Remem-
ber, we assume 5 user groups within our scheduling
system, Thus, those 5 feature values represent the ex-
pected future which might enable the system to react
on a changed user demand in a flexible fashion.

4. Rule Based Scheduling

For a rule based scheduling approach, every possi-
ble scheduling state must be assigned to a correspond-
ing situation class. A complete rule base consists of a
set of rules Ri that cover all possible situations of the
scheduling system. Each rule contains a conditional
and a consequence part. The conditional part describes
the conditions for the activation of the rule and the con-
sequence part represents the corresponding controller
behavior. However, as we are using several rules the
term recommendation specifies the output of a single
rule while the consequence is the superpositioning of
the recommendations of all rules in a rule base. In or-
der to specify each scheduling state in an appropriate
fashion each rule defines certain partitions of features
as a conditional part. The rule base must select at least
one rule for every possible system situation.

The scheduling strategy also includes two steps:
(i) A sorting criterion for the waiting queue ν(t).

(ii) A scheduling algorithm that uses the order of
ν(t) to schedule one or more jobs.

We use the term strategy to describe the whole
scheduling process that consists of both steps. First,
the chosen sorting criterion determines the sequence
of jobs within the waiting queue. Second, the selected
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scheduling algorithm finds a processor allocation for
at least one job of the sorted waiting queue. We have
chosen four different sorting criteria:
– Increasing Number of Requested Processors: Pref-

erence of jobs with little parallelism and therefore
higher utilization.

– Increasing Estimated Run Time: Preference of short
jobs and therefore higher job throughput.

– Decreasing Waiting Time: Preference of long wait-
ing jobs and therefore more fairness.

– Decreasing User Group Priority: Preference of jobs
from users with a higher resource demand.

The selected scheduling algorithm is one of the four
methods presented in Section 2.1. Note that Greedy
is already a complete scheduling strategy while the
other described scheduling algorithms need a sorting
criterion of ν(t) in addition.

The general concept of the rule based scheduling
approach is depicted in Figure 1.

As 4 different sorting criteria with 3 possible
scheduling algorithms and the combined Greedy strat-
egy are available, we have to chose one of 13 strategies
for each possible state. However, it is not practicable
to test all possible assignments in all possible states.
For example, lets assume a very coarse division of
each feature into only 2 partitions. Then 13 possible
strategies and 7 features result in 1327 ≈ 3.84 · 10142

simulations if all combinations in all possible situ-
ations are tested. Additional problems occur during
the generation of a rule based scheduling system as
the number and reasonable partitions of features that
are required to describe the conditional parts of the
rules in an appropriate way are generally unknown in
advance.

Hence, we introduce two possible approaches to de-
rive a rule based scheduling system using only a lim-
ited number of simulations. The first static attempt,
the iterative rule base generation, is based on a se-
quential optimization of the output behavior assign-
ment to a predefined situation class, see Section 4.1.
The second dynamic approach, Symbiotic Evolution,
automatically extracts an appropriate situation classi-
fication with the corresponding output behavior and is
presented in Section 4.2.
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Fig. 1. General Concept of the Rule-Based Scheduling Approach.

4.1. Iterative Rule Base Generation

We use NF = 7 features within our rule based sys-
tem. For the iterative approach, the number of inter-
vals that divide the whole value range of the features
is fixed, that is, each feature ω has N

(ω)
p − 1 static

bounds, that divide the possible value range of ω into
N

(ω)
p partitions. Generally, a larger number of parti-

tions N
(ω)
p of a feature ω potentially leads to a more

accurate rule set while more situation classes must be
optimized. Overall, this results in Nr situation classes
that must be provided to cover all possible system
states with
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Nr =
NF∏
ω=1

N (ω)
p . (1)

Then Algorithm 2 assigns sorting criteria and schedul-
ing algorithms to situation classes.

Algorithm 2 Iterative Optimization of Rules.
Assign a standard strategy to all Nr rules
R1, . . . , RNr

of rule base R
for i = 1 to Nr do

fold(Ri) =∞
for s = 1 to 13 do

Use strategy s as the consequence part of
rule Ri and run a simulation with the result
fnew(Ri)
if (fnew(Ri) < fold(Ri)) then

Assign strategy s to rule Ri

fold(Ri) = fnew(Ri)
end if

end for
end for

FCFS together with the sorting by waiting time has
been selected as the standard scheduling strategy in
Algorithm 2. This strategy is used at most real instal-
lations.

The iterative rule base generation has the advan-
tage of easy implementation and generates rule bases
that can easily be interpreted by providers. Future
scheduling development may benefit from knowledge
gained through this kind of interpretation. The selected
scheduling algorithms and sorting criteria for a certain
scheduling situation can directly be extracted from the
corresponding rules without further computation.

However, the fixed division of the whole feature
space has a critical influence on the performance of
the scheduling system. At the moment, no mechanism
is provided that automatically adjusts the defined par-
titions. In addition, a reduction of the number of fea-
tures is not yet considered, that means that all sit-
uation classes or rules must contain and specify all
features. This approach optimizes each situation class
separately with limited influence on other allocations.
Thus, it can be assumed that the resulting rule base can
still be improved by considering the cooperation as-
pects of different rules. The next section describes our
second approach that avoids most of the mentioned
problems.

4.2. Symbiotic Evolutionary Approach

Our generation of a Genetic Fuzzy system is based
on a Symbiotic Evolutionary Algorithm, as introduced
by Juang et al. [29]. First, we describe how a single
Fuzzy rule is coded as an individual within the Sym-
biotic Evolutionary Algorithm.

4.2.1. Coding of Fuzzy Rules
For a single rule Ri, every feature ω of all NF fea-

tures is modeled by a Gaussian membership function
(GMF).

g
(ω)
i (x) =

1

σ
(ω)
i

√
2π

exp

−(x− µ
(ω)
i )2

2σ
(ω)
i

2

 (2)

Rule Ri consists of a set of feature descriptions in the
conditional part where each feature ω is described by
a pair of real values µ

(ω)
i and σ

(ω)
i . µ

(ω)
i is the center

of feature ω. Therefore, this value defines an area of
system states in the feature space where the influence
of the rule is very high. Note that using a GMF as
feature description the condition
∞∫

−∞

g
(ω)
i (z)dz = 1 ∀ i ∈ {1, . . . Nr}∧ω ∈ {1, . . . NF }

always holds. In other words, for increasing σi(ω)
values, the peak value of the GMF decreases because
the integral remains constant. Using this property of
a GMF we are able to reduce the influence of a rule
for a feature ω completely by setting σ

(ω)
i to a very

high value. For σ
(ω)
i → ∞, a rule has no influence

for feature ω anymore. With this approach, it is also
possible to establish a kind of default value that is
used if no other peaks are defined in a feature domain.
Based on this feature description, a single rule can be
described by

Ri =
{

g
(1)
i (x), g

(2)
i (x), . . . , g

(NF )
i (x),Ωi

}
. (3)

In Figure 2, we show a coding scheme for an indi-
vidual object vector where one individual represents
one rule. The consequence of rule Ri is vector of num-
bers Ω(Ri) that specify a weight for each possible
scheduling strategy. Thereby, it is possible to specify a
scheduling strategy which is particularly favorable for
a certain system state and another one which is clearly
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i

Fig. 2. Coding of a Chromosome for the Symbiotic Evolutionary Algorithm.

unfavorable. The final output decision is then com-
puted by the superposition of the consequence parts
of the involved rules.

The main advantage of using several GMFs for de-
scribing a single rule is the automatic coverage of the
whole feature space. In contrary to the iterative ap-
proach, a rule gives a scheduling strategy for all pos-
sible situations. Hence, it is the focus of this approach
to find a meaningful set of Nr rules that generates a
good rule base system

R = {R1, R2, . . . , RNr}. (4)

4.2.2. Controller Output Decision
For each rule Ri and the actual feature vector x =

(x1, x2, . . . , xNF
), we compute a degree of member-

ship φi(x)

φi(x) =
NF∧
ω=1

g
(ω)
i (xω) (5)

=
NF∏
ω=1

1

σ
(ω)
i

√
2π

exp

{
−(xω − µ

(ω)
i )2

2σ
(ω)2

i

}

The degree of membership of a single rule is calculated
by performing an ”AND” operation on the GMFs of
the rule’s features.

4.2.2.1. General Output Decision For all rules we
collect the corresponding values φi(x) in a member-
ship vector

φ(x) =
(

φ1(x) φ2(x) . . . φNr
(x)

)
. (6)

Further, Ω(Ri) ∈ RNΩ specifies the recommenda-
tion vector of rule Ri. This vector includes the cor-
responding weights for the NΩ possible consequence
parts. In our example, each of the 13 possible strate-
gies is assigned to a position in Ω(Ri).

We provide a weight for every element in Ω(Ri).
These weights can assume the values:

−5 ∧= particularly unfavorable

−1 ∧= unfavorable

0 ∧= no recommendation

1 ∧= favorable

5 ∧= particularly favorable.

The consequences of all rules are described by the
matrix

CNΩ×Nr =
[
Ω(R1) Ω(R2) . . . Ω(RNr

)
]
. (7)

Now we compute the weight vector Ψ by multiply-
ing the membership vector φ(x) with the transposed
matrix CT

Ψ = φ(x) ·CT (8)

such that Ψ = (Ψ1Ψ2 . . .ΨNΩ) contains the super-
positioned weight values for all NΩ possible output
decisions. The expression

arg max
1≤k≤NΩ

{Ψk} (9)

determines the final output decision of the whole rule
system.

4.2.2.2. Default Output Decision Unfortunately,
Fuzzy control systems may lead to controller scatter-
ing. In some cases, the system may initiate a change
of output even for a minimal input parameter varia-
tion. To avoid frequent switching between two output
decisions, we introduce a threshold for the activation
of a controller output. Then, the output of the system
is only determined by the output corresponding to the
superpositioned membership value if the total degree
of membership value exceeds a predefined constant
threshold level. Otherwise, a standard output is used.

Using a normalized GMF a feature encoding en-
ables the establishment of a default value by select-
ing a large σ

(ω)
i for the corresponding feature ω. This

modeling of a default value is now combined with the
above mentioned thresholds.

The threshold value and the default output are part
of an evolutionary optimization process. They are en-
coded in a single chromosome. Furthermore, a second
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population of default value individuals is optimized
in parallel. The evaluation of the two populations is
performed in combination, see Section 4.3.4.

4.2.3. Similarity Measure for Rules
An acceptable Fuzzy rule base is expected to pos-

sess a good coverage, that is, the correlation between
GMFs should be small. Otherwise if only rules with
a high correlation are combined then the system may
not be able to cover most of the possible scheduling
states in an appropriate fashion. Therefore, a measure
of similarity is needed for the selection of rules during
the evolutionary optimization process.

For the Symbiotic approach, a rule systemR is com-
posed by Nr rules. In many cases, several rules exist
in a population, that are centered on very similar con-
figurations for the conditional part. In order to com-
bine only rules which represent different states within
a systemR, a similarity measure is needed. This simi-
larity measure is used to build rule bases by incremen-
tally adding rules with the smallest similarity to the
last selected rule. The first rule is picked randomly.

Specifically, we define the similarity of two rules
by the cross correlation of the corresponding GMFs.
This cross correlation ϕg1g2 of two GMFs g1(z) and
g2(z) for one feature can be computed by:

ϕg1g2 =

∞∫
−∞

g1(z) · g2(z) dz

=
1

√
2π

√
σ2

1 + σ2
2

exp
{
−(µ1 − µ2)2

2(σ2
1 + σ2

2)

}
. (10)

For two rules Ri and Rj with NF features, we com-
pute the total cross correlation by averaging the cross
correlation over all features:

ϕRi,Rj =
1

NF

NF∑
ω=1

∞∫
−∞

g
(ω)
i (z) · g(ω)

j (z) dx

=
1

NF ·
√

2π

NF∑
ω=1

exp

{
−(µ(ω)

i − µ
(ω)
j )2

2(σ(ω)2

i + σ
(ω)2

j )

}
√

σ
(ω)2

i + σ
(ω)2

j

. (11)

Remember that for our Symbiotic Evolutionary Al-
gorithm, the number of features NF remains constant
during the whole optimization process.

Based on the similarity, ϕRi,Rj
we compose the

rule bases as shown in Figure 3. Intuitively, only those
rules are combined to a rule base which have a small
similarity. Thus, we try to ensure a high degree of
diversity between rules within the rule bases and a
high coverage of the feature space.
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Fig. 3. Composition of Rules to Rule-Systems by Juang et al. [29].

4.2.4. Fitness Assignment
The fitness assignment for all individuals within a

generation is obtained by Algorithm 3 where Nf and
Nr are the number of bases and the number of rules per
base, respectively. With N

(i)
s we denote the number

of Fuzzy systems in which Ri participated.
We subtract the resulting fitness f(Ri) of a single rule
Ri from a predefined maximum value fmax to achieve
a minimization problem. Then, we are consistent with
the scheduling objective functions which also must be
minimized.

Formally, the fitness assignment f(Ri) of rule Ri

is given by

f(Ri) = fmax −
1

N
(i)
s

N(i)
s∑

n=1

fn(Ri)
Nr

(12)

In Equation 12, fn(Ri) denotes the temporal fitness
assignment determined by the overall performance of
the n-th Fuzzy system of all N

(i)
s rule bases in which

Ri participated during the population evaluation pro-
cess. Usually, it can be assumed that a fair fitness eval-
uation of the whole population is only guaranteed if
the number of participations within the rule bases is
constant for all rules within the population. To ensure
that this condition is obeyed, we also allow the com-
position of rules to systems which may have a high
degree of similarity. This is only applied, if a rule is
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Algorithm 3 Fitness Assignment for the Symbiotic
Evolutionary Algorithm

f(Ri) = 0 ∀i ∈ {1, . . . λ}
N

(i)
s = 0 ∀i ∈ {1, . . . λ}

for n = 1 to Nf do
S = Qt,λ

Rn = ∅
Ri is selected randomly from S
S = S\Ri

Rn = Rn ∪Ri

for a = 1 to (Nr − 1) do
Select Rj ∈ S with Rj = arg min

Rk∈S
{ϕRi,Rk

}
Rn = Rn ∪Rj

S = S\Rj

Ri = Rj

end for
fn ← evaluate(Rn)
f(Ri) = f(Ri) + fn/Nr ∀Ri ∈ Rn

for i = 1 to Nr do
if Ri ∈ Rn then

N
(i)
s = N

(i)
s + 1

end if
end for

end for
f(Ri) = f(Ri)/N

(i)
s i ∈ {1, . . . , λ}

very similar to another rule, but has not participated
sufficiently enough in different bases.

4.2.5. Selection by Clusters
Selection is an important operator for Evolution-

ary Algorithms because it controls the diversity of the
whole population. The selection operator is able to
conserve good solutions for multiple generations. In
our case, a rule base should cover most of the pos-
sible system states. Furthermore, the population of
an Evolutionary Algorithm should also keep and im-
prove those rules that describe niches within the fea-
ture space. Therefore, a special selection mechanism
has been developed, that does not only refer to the in-
dividuals fitness but also to their degree of coverage
within the feature space, see Algorithm 4.

As already mentioned, a rule’s position in the NF -
dimensional feature space is determined by its GMF-
µ

(ω)
i -value. To ensure a good coverage of most of the

possible system states it is sufficient to consider only
the clusters of the GMF centers. Therefore, we restrict

our analysis to the identification and clustering of sim-
ilar GMF-µ(ω)-values of the population. For the de-
termination of clusters we apply the computationally
efficient k-Means algorithm with an exchange method
as proposed by Späth [43].

Algorithm 4 Selection Strategy.
Determine k clusters {c1, . . . , ck} of all rules
R1, . . . , RNr

in the population Qt,λ based on their
GMF-µ(ω)-values.
for i = 1 to k do

Compute the mean fitness f̄(ci) for cluster ci

by selecting the b = min{|ci|, n} individuals
{R1, . . . , Rb} ∈ ci with the best fitness accord-
ing to

f̄(ci) =
1
b

b∑
l=1

f(Rl)

{Here, n represents the number of individuals
that are used to determine the mean of the fitness
of individuals in all clusters.}

end for
for i = 1 to k do

Add µi individuals from ci to Pt+1,µ with

µi =

⌊
µs

f̄(ci)
∑k

l=1 1/f̄(cl)
+ 0.5

⌋
end for
while |Pt+1,µ| ≤ µs do

Select best Ri from the remaining individuals ac-
cording to the best cluster and individual fitness.
Pt+1,µ = Pt+1,µ ∪Ri

end while

Note that the fitness of a cluster is determined by
the mean of the n best individuals and that we address
the minimization of the fitness objective. This allows
the selection of individuals with a good fitness value
even if the majority of the cluster members have a very
bad fitness. Algorithm 4 describes by µs the number
of rules that must be selected over all cluster. µi de-
scribes the number of rules that are selected from the
i-th cluster. Of course this must be an integer value
and hence we round to the next integer value. For the
evaluation we have chosen k = 10 and n = 5.
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4.3. Configuration of the Symbiotic Evolutionary
Algorithm

Different modifications of Evolution Strategies have
been developed for parameter optimization. Here, we
have chosen a (µ + λ)-Evolution Strategy. The speci-
fication of the µ and λ values is closely connected to
the parameter values for the Symbiotic Approach.

4.3.1. Population Size
Note that the variables µ and λ correspond to an

Evolution Strategy in this section. The number Nr of
rules that form a Fuzzy system is static for the Symbi-
otic Approach and must be chosen at the beginning of
the optimization. After applying several experiments
with different values of Nr we have selected Nr =
50. The resulting systems have shown a higher perfor-
mance than systems with a different number of partici-
pating rules. As no rule exists twice in a Fuzzy system,
each population must consist of at least µ = 50 po-
tential rules. As recommended by Schwefel [38], the
ratio of µ/λ = 1/7 should be used for the Evolution
Strategy. This results in λ = 350 child individuals in
the evolutionary process. Hence, 350 individuals must
be evaluated within each generation.

As proposed by Juang et al. [29], we must ensure
that every rule within the population participates suf-
ficiently enough in Fuzzy systems. In our work, we
assume that it is possible to determine the fitness of
a rule if it is part of exactly Ns = 10 Fuzzy systems.
Consequently, we must evaluate Nf = 350·10

50 = 70
rule bases in each generation. This results in 70 sim-
ulations for each generation.

4.3.2. Recombination Operator
The recombination operator and also the mutation

operator of the next section modify the individual rules
during the evolutionary process. During the discussion
of the Evolution Strategy we use a vector a of compo-
nents ak, where each ak corresponds to either a µ

(ω)
i ,

a σ
(ω)
i , or an output of the underlying rule.

We haven chosen discrete multirecombination as
the recombination operator. For this approach, a sin-
gle new offspring is recombined from ρ = 12 par-
ents. Each component ak of the offspring is randomly
chosen to be one of the 12 possible components of
the ρ = 12 parents at the same position. As we need

to generate λ new individual we select for each new
individual ρ parents from the µ potential parents for
recombination and repeat this procedure λ-times.

However, those 12 parents are not all randomly se-
lected from the current population. We select ρ/2 = 6
parents with a very high degree of similarity and the
remaining ρ/2 = 6 parents randomly. The first 6 simi-
lar individuals are selected by determining the first in-
dividual randomly and selecting all other individuals
using the total cross correlation. Thereby we ensure
that the recombination operator leads to new rules in
other areas of the feature space while still covering
the already explored areas of the feature space. Hence,
this procedure reflects the compromise between ex-
ploration and coverage of the feature space.

The actual recombination is described by Equa-
tion 13 where Z is randomly chosen from the interval
[0,1[.

arec
k =


a1 if 0 ≤ Z < 1

ρ

a2 if 1
ρ ≤ Z < 2

ρ
...

aρ if ρ−1
ρ ≤ Z < 1

(13)

Since we do not use any complex self adaptive pa-
rameters that must be considered for the recombination
procedure, the recombination is similarly performed
for all elements of the parameter vector.

The recombination does not affect any parameter of
the mutation operator.

4.3.3. Mutation Operator
For the mutation operator, we have selected the

commonly accepted Mutation Success Rule as pro-
posed by Rechenberg [36]. This rule adapts the stan-
dard deviation of the Gaussian mutation by incorpo-
rating the success of the last mutations. To this end, we
count the number of mutations that lead to better rules
regarding their fitness and the number of all mutations.
For each generation, except the first one, the quotient
ζ is again computed by the number of successful mu-
tations in relation to all performed mutations:

ζ =
Number of successful mutations

Number of all mutations
. (14)
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Note, in our work, a mutation is called successful if
the recombined and mutated offspring is better than a
randomly selected parent from the ρ parents. Further,
we adapt the mutation step size σ in each generation:

σ(new) =


ασ(old) if ζ > ζ0,
1
ασ(old) if ζ < ζ0,
σ(old) otherwise

(15)

with α = 1.224 and ζ0 = 1/8.
This mutation step size influences the variation of

each vector component ak of the vector that describes
a rule. The new vector component a

(new)
k after muta-

tion is computed by

a
(new)
k = a

(old)
k +N (0, σ(old)). (16)

In this paper, we use a relatively large popula-
tion for the Evolutionary Algorithm. The original
Mutation Success Rule was developed for the (1+1)-
Evolution Strategy [36]. It is considered, for instance,
by Deb [10] that the usually optimal ratio ζ0 = 1/5
is too optimistic in case of such a configuration. In
order to avoid a continuous reduction of the mutation
step size, we have decreased the optimal success rate
to ζ0 = 1/8.

4.3.4. Population for Default Values
As already described, we generate a second popu-

lation of default value individuals that is evolutionary
optimized in parallel to the optimization of the Fuzzy
rules. Therefore, we introduce a new species of real
value coded individuals that describe a certain thresh-
old and a recommended output decision which is used
as default value. This recommend scheduling strategy
is used to generate the next schedule if the superpo-
sitioning of all rules within the Fuzzy system gener-
ates a value that is smaller than the defined threshold.
Due to this additional population the whole procedure
can be considered as a Cooperative Coevolutionary
Algorithm [34] approach, as a default value individ-
ual will participate in each generated Fuzzy system.
Both populations exist genetically isolated within the
ecosystem, that is, individuals will only mate with
other members of their own species. By evolving both
species in different populations these mating restric-
tions are always obeyed.

The default value population consists of Nf individ-
uals for the offspring generation. This is reasonable,

as the evaluation of the Fuzzy rules requires Nf Fuzzy
systems where each of those Fuzzy systems contains
one default value. Hence, the corresponding popula-
tion of default values should also consist of Nf =
70 individuals which leads to a (10+70)-Evolution
Strategy by applying Schwefel’s recommendation [38]
(µ/λ = 1/7).

For the actual fitness evaluation, the two popula-
tions must cooperate. Once a Fuzzy system has been
generated by composing it from rule individuals, a
single default value is added to this system, and the
overall performance is evaluated by simulation. The
assigned fitness value for the default value individual
is equal to the performance of the Fuzzy system in
which this individual has participated. Note that the
fitness value of the rule population is influenced by
the default value individuals. So this cooperation may
lead to better rules and default values as well. For
the default value population, we apply the ”two-point
rule” of Rechenberg [4] with α = 1.3 and do not use
recombination.

5. Evaluation

To evaluate the performances of the iterative and the
Symbiotic approach addressed in this paper, various
simulations have been carried out with workload traces
from real computer installations being used as input
data. Each resulting Fuzzy system has been simulated
by a discrete event simulation. In order to demonstrate
the flexibility of the approaches with respect to differ-
ent preferred user groups, we tested several objective
functions.

5.1. Used Workload Traces

The used workloads are all available from the
Standard Workload Archive [15]. Six well known
workloads have been selected. They origin at the
Cornell Theory Center (CTC) [27], the Royal Insti-
tute of Technology (KTH) [33] in Sweden, the Los
Alamos National Lab (LANL) [13] and the San Diego
Supercomputer Center (SDSC00/SDSC95/SDSC96)
[14,45]. Each of these workloads has been recorded
at a real parallel computer and provides information
about the job requests for the computational resources.
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In order to make those workloads comparable they are
scaled to a standard machine configuration with 1024
processors as described by Ernemann et al. [11]. The
data of the used workloads are presented in Table 1.
The fact that the available workload data are relatively
old does not affect the presented methodology.

Identifier CTC KTH LANL SDSC00 SDSC95 SDSC96

Machine SP2 SP2 CM-5 SP2 SP2 SP2

Period 06/26/96 -
05/31/97

09/23/96 -
08/29/97

04/10/94 -
09/24/96

04/28/98 -
04/30/00

12/29/94 -
12/30/95

12/27/95 -
12/31/96

Processors 1024 1024 1024 1024 1024 1024

Jobs 136471 167375 201378 310745 131762 66185

Table 1
Scaled Workload Traces from Standard Workload Archive [15]
using the Scaling Procedure by Ernemann et al. [11].

5.2. Formulation of User Group Prioritizations

In general, any mathematical function can be used
for the objective. However, we restrict ourselves to
linear objective functions and assume that an adequate
priority assignment can be established by weighting
the sum of the AWRT objective of the different user
groups:

fobj =
5∑

i=1

θi ·AWRTi with θi ∈ R+
0 . (17)

Each weight θi specifies the priority of user group i
defined by the system provider.

In this paper, we exemplarily limited the prioritiza-
tion to a maximum number of 2 user groups. A typical
function that prioritizes user group 1 and user group 2
over all other users may be

fobj = 10 ·AWRT1 + 4 ·AWRT2.

As already mentioned in the introduction, we
present our achieved results relative to the approxi-
mated Pareto front (PF) of all feasible schedules [3].
Although, we do not know the real Pareto front, the
high density of our approximation indicated that the
quality of the approximation is very good. Note that
the approximated Pareto front was generated offline
and it cannot be taken for granted that this front
can be reached by our proposed online scheduling
systems at all. Therefore, we refer to this front as a
reference of the best achievable solution.

Feature Intervals

SD [1-2], ]2-100]

Um[%] [0-75], ]75-85], ]85-100]

PRCWQ1[%] [0-20], ]20-100]

PRCWQ2[%] [0-20], ]20-100]

PRCWQ3[%] [0-25], ]25-100]

PRCWQ4[%] [0-25], ]25-100]

PRCWQ5[%] [0-25], ]25-100]

Table 2
Feature Partitions for the Iterative Rule-base Generation.

5.3. Results of the Iterative Approach

First, we present the results that have been achieved
by using the iterative approach. Here, we have as-
sumed a single division of the intervals of SD and
PRCWQ1-5 respectively. This results in each case in
two partitions. Further, we use three partitions for the
Um feature. Overall, this produces 26 ·3 = 192 differ-
ent rules that are needed to build a complete rule base.

Furthermore, different division values for the situ-
ation class features have been evaluated. Therefore,
the complete iterative optimization process has been
performed for slightly modified division values. The
partitions which achieved the best results for the ob-
jective function are listed in Table 2.

With this feature partitions the iterative optimiza-
tion procedures has been performed. The results of the
corresponding simulations are given in Table 3. Note
that we present those results as relative values com-
pared with the standard scheduling strategy EASY. We
have selected EASY as this strategy performs in most
cases better than CONS or FCFS. For an objective K
we computed the relative value as:

K[%] =
KEASY −Krule based

KEASY
· 100.

A positive value for the AWRT[%] objective denotes
an improvement regarding to the standard strategy. For
the U[%] objective a positive percentage value denotes
a deterioration of the system’s performance, as the
utilization has to be maximized from the provider’s
point of view.

In Table 3, we show that it is possible to optimize
most of the workloads with respect to the given ob-
jective function by the iterative approach. The im-
provements of the objectives result in a preference
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fobj = 10 · AWRT1 + 4 · AWRT2

Workload AWRT[%] AWRT1[%] AWRT2[%] AWRT3[%] AWRT4[%] AWRT5[%] U[%] fobj[%]

CTC -2.28 14.59 8.65 -6.46 -17.77 -40.43 0 12.78

KTH -18.19 5.32 -16.05 -29.76 -20.42 -60.39 0 -8.83

LANL -6.41 24.5 20.87 -29.02 -24.09 -213.66 0 23.36

SDSC00 -583.68 5.34 -492.24 -718.14 -1370.1 -1824.85 2.08 -130.39

SDSC95 1.21 3.38 -0.23 0.5 -6.58 7.3 0 2.28

SDSC96 -0.46 1.19 5.77 -18.6 1.11 2.76 0 2.49

Table 3
AWRT[%] and U[%] Objectives and fobj[%] after Iterative Optimization of the Rule Base in Comparison to EASY (in %).

of the specified user groups, that is, user groups 1
and 2 achieved an approximately 20 % shorter AWRT
compared to the standard algorithms by using the
LANL trace. However, for other user groups, like user
group 5, the AWRT increases about 200 %. Note that
the utilization is nearly constant for all workloads.

However, for two workloads is is not possible to
improve the objective with the iterative approach. It
can be assumed, that an approach for the automatic
generation of rule base also has to provide a mecha-
nism for the automatic adjustment of the feature par-
titions. The different workload characteristics cannot
be covered with a static set of partitions as it has been
applied within this approach.

5.4. Results of the Symbiotic Evolutionary Approach

Now, the results achieved by the Symbiotic evo-
lutionary approach are presented. Several simulations
with different workloads and different objective func-
tions have been done in order to evaluate the perfor-
mance and the flexibility of this approach.

In all simulations, we could not observe any benefi-
cial effect of the introduced default value and a thresh-
old level. Obviously, the problem of controller scat-
tering does not appear in our rule based scheduling
systems or the impact of the threshold mechanism is
in our case too small. Furthermore, the general abil-
ity of rules to cover the complete feature space by se-
lecting a high value for σ

(ω)
i provides already a kind

of default value mechanism. So, we do not consider
thresholds for rule activations in the following.

The results for the objective function are presented
in Table 4.

Figure 4 depicts the improvements of the objec-
tive function compared to EASY. Improvements have
generally been achieved for all workloads. For the

SDSC00 and the KTH workload good results could
also be achieved with this approach contrary to the
iterative optimization attempt. This indicates that the
evolutionary generated rule bases provide more flexi-
bility and adaptability for the different workload char-
acteristics. It can be observed that for the preferred
user groups a shorter AWRT is achieved. Along with
this objective the AWRT for the other user groups 4
and 5 increase drastically. For the SDSC00 workload,
for instance, the reduction of this value for user group
1 of 60 % corresponds to an increase of the AWRT
for user group 5 of about 16000 %.
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Fig. 4. Improvements of the Objective Function in Comparison to
EASY Achieved by the Symbiotic Evolutionary Approach for All
Workloads (in %).

Several simulations generated similar results for
most of the used workloads. Simulations with differ-
ent objective functions that expressed different user
group prioritizations lead to similar results.

In all cases, the Symbiotic evolutionary approach
clearly outperforms the iterative optimization concept.

In Figure 5 the improvements of the evolutionary
optimized objective function in comparison to the
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fobj = 10 · AWRT1 + 4 · AWRT2

Workload AWRT[%] AWRT1[%] AWRT2[%] AWRT3[%] AWRT4[%] AWRT5[%] U[%] fobj[%]

CTC -5.42 16.64 12.73 1.99 -26.36 -153.63 0 15.45

KTH -44.37 25.67 8.15 -51.32 -189.05 -1095.83 0 19.94

LANL -13.52 19.71 14.83 -23.32 -47.62 -269.36 0 18.21

SDSC00 -852.06 60.32 41.58 -5.15 -2562.25 -16162.14 4.9 55.21

SDSC95 -1.01 9.07 0.4 -20.74 -43.34 -40.68 0 6.48

SDSC96 -1.28 1.96 -2.07 -16.22 -15.12 -13.34 0 0.81

Table 4
AWRT[%] and U[%] Objectives and fobj[%] after Symbiotic Optimization in Comparison to EASY (in %).
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Fig. 5. Improvements of the Symbiotic Evolutionary Approach in
Comparison to the Iterative Approach (in %).

iterative optimizations are given. Note that for the
SDSC00 workload the Symbiotic evolutionary ap-
proach is more than 400 % better than the iterative
attempt. Obviously, the Symbiotic evolutionary ap-
proach achieves about 20 % better results in mean for
the optimization of a given objective function than
the iterative approach. Only for the SDSC96 work-
loads the results are even better applying the iterative
approach.

Figure 6 shows the AWRT values of the two
preferred user groups. This chart also depicts the
mentioned approximated Pareto front of all feasible
schedules. Remember that we have 7 simple objec-
tives. Each point within this chart represents a feasible
schedule that is not dominated by any other generated
feasible solution within the 7-dimensional objective
space. As we show only a projection of the actual 7-
dimensional Pareto front approximation, the elements
are covering an area in this 2-dimensional chart.

As EASY does not favor any user groups, the
achieved AWRT values are located in the mid of
the projected front area. with our iterative procedure

(ITER) it is already possible to move the AWRT val-
ues towards the actual front. Obviously, this approach
is capable to improve AWRT1 and AWRT2 signif-
icantly. However, our Symbiotic approach (SYMB)
almost reaches the front in our example. Thereby, is
clearly outperforms the iterative approach.
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Fig. 6. AWRT1 versus AWRT2 of the Iterative, the Symbiotic
Evolution Approach, the EASY Standard Algorithm, and the Ap-
proximated Pareto Front of all Feasible Schedules for the CTC
Workload.

Finally, a rule base has been generated with the
Symbiotic evolutionary approach using a single work-
load. This rule base has been applied in the following
to all other workloads. In Figure 7 the improvements
of the objective function in comparison to EASY are
presented. The rule base has been optimized using the
CTC workload. Although the system was not gener-
ated for the other workloads it achieves good results.
This behavior provides some evidence that the result-
ing rule bases can be applied in other scenarios and
hence can be called robust.
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Fig. 7. Improvements of the Objective Function in Comparison to
EASY Achieved by the Symbiotic Evolutionary Approach Trained
only for the CTC Workload (in %).

6. Conclusion

In this paper, we have presented a methodology for
automatically generating online scheduling strategies
for a complex objective defined by a machine provider.
To this end, we described two methodologies for the
development of rule based scheduling systems. A rule
system classifies all possible scheduling states and as-
signs a corresponding scheduling strategy.

For the first approach, we applied an iterative
method, that assigns a standard scheduling strategy to
all system states while for each rule, the best method
is extracted individually. The second approach uses
a Symbiotic evolutionary algorithm, that varies the
parameter of Gaussian membership functions to es-
tablish the different rules.

For both approaches, the performance has been
evaluated by simulations with different workloads.
The iterative approach is easy to implement but de-
pends on a-priori knowledge about adequate divisions
of the situation describing features. All features are
divided statically and cannot be modified during the
optimization process. So, no automatic adjustment of
feature partitions is provided which leads to very bad
results for some of the simulated workloads.

The Symbiotic evolutionary approach is able to gen-
erate the rule base without any expert knowledge, just
by performing evaluations. However, the implementa-
tion is more complex. The Symbiotic approach pro-
vides more flexibility with respect to different work-

loads and objective functions. Furthermore, this ap-
proach clearly outperforms the iterative version with
respect to the resulting objective functions values. We
further compared our approaches with the offline gen-
erated Pareto front of all feasible schedules which can
be considered as a reference for the best achievable
results for a certain objective. Here, we are able to al-
most reach this front with the proposed Genetic Fuzzy
systems.

Finally, also the robustness of the evolutionary de-
veloped rule bases can be considered from simula-
tion results. The work at hand presented one possi-
ble approach of automatically generating appropriate
scheduling strategies for various complex provider ob-
jectives. The work could not be compared with any
other methods, as the authors are not aware of such
similar systems.
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