
Genetic Fuzzy Systems applied to
Online Job Scheduling

Carsten Franke, Joachim Lepping, and Uwe Schwiegelshohn

Abstract— This paper presents a comparison of three dif-
ferent design concepts for Genetic Fuzzy systems. We apply
a Symbiotic Evolution that uses the Michigan approach and
two approaches that are based on the Pittsburgh approach: a
complete optimization of the problem and a Cooperative Coevo-
lutionary algorithm. The three different Genetic Fuzzy systems
are applied to a real-world online problem, the generation of
scheduling strategies for Massively Parallel Processing systems.
The Genetic Fuzzy systems must classify different scheduling
states and decide about a corresponding scheduling strategy
within each scheduling state. The main challenge arise in the
delayed reward given by a critic. Therefore, it is impossible
to directly evaluate the assignment of scheduling strategies to
scheduling states. In our paper, the three design concepts are
evaluated with real workload traces considering result quality,
computational effort, convergence behavior, and robustness.

I. INTRODUCTION

Fuzzy systems are usually designed by modeling implicit
knowledge of an expert within a set of linguistic variables
and Fuzzy rules, see Hoffmann [1]. They have been applied
successfully to many real-world problems. Especially Ge-
netic Fuzzy systems are well suited to address classification
and automatic rule base generation. They provide mechanism
to automatically extract expert knowledge from existing data
by utilizing Evolutionary Algorithms to adjust membership
functions and to define the output behavior of individual
rules. The different Genetic Fuzzy systems encode either
single rules (Michigan approach, Bonarini [2]) or complete
rule bases (Pittsburgh approach, Smith [3]).
The Michigan approach is mainly associated with continuous
learning in non-inductive problems, see Cordón et al. [4].
During the evolutionary optimization it uses a set of individ-
uals each representing only a single rule. This set is evolved
during the optimization process. Hence, all rules compete
to participate in the next generation. However, they also
must cooperate to establish rule bases that perform well with
respect to the given objective function. This cooperation-
competition dualism must be well balanced to obtain good
results and is therefore a drawback of this approach. In this
paper, we realize the Michigan approach as a Symbiotic

Manuscript received on February 12, 2007. This work was financially
supported by the Deutsche Forschungsgemeinschaft (DFG) as a subproject
of the Collaborative Research Center 531, ”Computational Intelligence”, at
the Dortmund University.

Carsten Franke was a member of the Robotics Research Institute at
Dortmund University and he is now with the SAP Research CEC Belfast,
TEIC Building, University of Ulster, Newtownabbey BT37 0QB, UK (email:
carsten.franke@sap.com). Joachim Lepping and Uwe Schwiegelshohn
are with the Robotics Research Institute, Section Information Tech-
nology (IRF-IT), 44221 Dortmund, Germany (email: {joachim.lepping,
uwe.schwiegelshohn}@udo.edu).

Evolutionary Algorithm as introduced by Juang et al. [5].
Therefore, we will use the terms Michigan approach and
Symbiotic Evolution interchangeably in the following.
The Pittsburgh approach has been developed with a focus on
generalization. To address the representation of knowledge in
a single entity it encodes a whole rule base in each individual.
Therefore, an composition of individuals to rule bases is not
necessary as each individual can be evaluated independently
as an entire Fuzzy system. However, the main drawback
of the Pittsburgh approach in comparison to the Michigan
approach is the potentionally large size of the individuals.
This involves a large search space for the evolutionary
optimization and may reduce the efficiency of various genetic
operators.
To reduce the search space we also evaluate a Coopera-
tive Coevolutionary algorithm (CCA) [6] where the whole
problem can be partitioned into different subdomains and
each subpopulation is based on the Pittsburgh approach. For
this concept, individuals are assigned to certain species, and
the CCA architecture therefore models an ecosystem that
consists of two or more species. As in nature, the species are
genetically isolated, that is, individuals only mate with other
members of their species. Such mating restrictions are simply
enforced by evolving the species in separate populations
where they try to adapt the environment by the repeated ap-
plication of a classic Evolutionary Algorithm. Furthermore,
the species interact with one another within a shared problem
domain model and have a cooperative relationship. In order
to evaluate individuals from one species, they have to form
collaborations with representatives from each of the other
species.
In this paper, we utilize all three design concepts for the
generation of rule bases that are applied to a large real-
world online problem which will be described in the next
section. For this online problem there exists a large amount
of realistic data as a record of real-world problem instances
that are used for our evaluation. The actual evaluation process
compares the three approaches in terms of absolute and
relative solution quality, the computational effort, and the
convergence behavior. Further, we also consider some aspects
of robustness.

II. BACKGROUND

As a large online problem we select parallel job schedul-
ing at Massively Parallel Processing (MPP) systems where
independent computational jobs are submitted over time.
This scheduling problem is an online problem as neither
the real processing time nor the release time of the jobs are



known in advance. The users only provide estimates of the
processing time at the submission time of a job. We have
chosen this type of online problem as it is rather simple
due to the absence of any precedence constraints between
jobs. Furthermore, it is of practical relevance and there exist
comprehensive and representative workload traces from real
MPP systems that can be used for training and evaluation.
However, note that those traces only provide realistic input
data for the online problem but there exist no separate
training data as a knowledge base for the actual rule base
generation.
Each MPP system consists of multiple processing nodes, and
in all such systems every job requires the concurrent and
exclusive access to a fixed number of machines during the
whole execution phase. If a job has been submitted but cannot
be started immediately due to an insufficient number of free
processing nodes it is sent to the queue of waiting jobs.
Therefore in MPP systems, a scheduling state mainly consists
of the current schedule that describes the actual allocation of
processing nodes to certain jobs, the queue of waiting jobs,
and the characteristics of the resource allocations of already
finished jobs. The various scheduling strategies mainly differ
in the way they sort the waiting queue and how they select
the next job from the waiting queue to insert it into the
current schedule, that is, they obey different restrictions when
choosing the next job. As the focus of this paper is on Genetic
Fuzzy systems, we refer the interested reader to Franke et
al. [7], [8] for further details on the scheduling problem.
For this problem, individual scheduling decisions can only
be evaluated after all jobs completed processing. Hence, the
award for the assignment of scheduling strategies to states
is given by a critic only at the end of scheduling a whole
workload trace. Furthermore, an appropriate system state
classification is not known in advance and is implicit part
of the generation of the rule based scheduling system.
In order to learn our rule bases, we must combine the Fuzzy
systems with Evolutionary Algorithms. In this work, we
apply Evolution Strategies, see Bäck and Schwefel [9], which
are a subclass of Evolutionary Algorithms. Evolution Strate-
gies are stochastic search methods that mimic the behavior of
biological evolution. They operate on a parental population
of size µ and apply evolutionary operators like selection,
mutation, and recombination to breed λ offspring individuals
from parent individuals. Based upon the evaluation results,
a new population of individuals is selected. In detail, we
use a (µ + λ)-Evolution Strategy. For details see Bäck and
Schwefel [9]. The detailed configurations of our Evolution
Strategies are also given in other publications [7], [8].

III. RULE BASED SCHEDULING CONCEPT

A rule based scheduling system for our problem uses a set
of rules where every single rule consists of a conditional and
a consequence part. The conditional part describes the system
state in which this rule may be applied. Each individual
rule Ri (i ∈ {1, · · · , Nr}) assigns a consequence part Ωi

to its conditional part. Each system state at time t consists
of the current Schedule S(t), the current waiting queue ν(t),

and the set of already finished jobs ξ(t). It is described by a
set of features which will be detailed later on. The scheduling
strategy must determine:

1) A sorting criterion for the waiting queue ν(t).
2) A scheduling algorithm that uses the order of ν(t) to

schedule one or more jobs.
Many existing scheduling algorithms for MPP systems can be
applied to this online problem. We have chosen the Conserva-
tive Backfilling (CONS), the EASY Backfilling (EASY) [10],
First-Come-First-Serve (FCFS), and a Greedy algorithm [11]
which are the most popular ones. The Greedy algorithm is
already a complete scheduling strategy while the former three
algorithms must be supplemented with a sorting criterion
of ν(t) [7]. For this sorting criterion, we use one of four
different simple properties of a job:

1) the degree of parallelism
2) the current waiting time
3) the estimated runtime
4) the user group

This results in 13 different options for the scheduling strate-
gies. In Figure 1, the rule based scheduling concept is
depicted. The controller first determines the actual system
state and selects a corresponding sorting of the job waiting
queue and a scheduling algorithm. Both are applied next to
the underlying scheduling system. As already mentioned, we

Scheduling

Algorithm

Scheduling System

Controller

Classification

Rule Base

…R1 R2 R3 R4 R5 R6 R7 R8 R9 RNr

Scheduling Algorithm

Sorting Criterion

R
u

le
S

el
ec

ti
o
n

R
u

le
A

p
p
licatio

n

m

T
im

e

Current

Schedule

Current

Waiting-Queue

Machines

S
o

rt
in

g

C
ri

te
ri

o
n

O
rd

er
o

f

E
x
ec

u
ti

o
n

Past Scheduling

Decisions

Scheduling

Algorithm

Scheduling System

Controller

Classification

Rule Base

…R1 R2 R3 R4 R5 R6 R7 R8 R9 RNr

Scheduling Algorithm

Sorting Criterion

R
u

le
S

el
ec

ti
o
n

R
u

le
A

p
p
licatio

n

m

T
im

e

Current

Schedule

Current

Waiting-Queue

Machines

S
o

rt
in

g

C
ri

te
ri

o
n

O
rd

er
o

f

E
x
ec

u
ti

o
n

Past Scheduling

Decisions

Fig. 1. Schematic Depiction of the Rule Based Scheduling Concept.

use several simple features to describe a system state. The
first feature is the Average Weighted Slowdown (SD(t)) over
all jobs that have already completed their processing [7]. This
feature is the ratio between the response and the waiting time
of those jobs [8]. The lower the value of SD(t) the better.
The Momentary Utilization (Um(t)), see Franke et al. [7], of



the whole system at time t represents the second feature. The
last 5 features refer to the waiting jobs j ∈ ν(t) of each user
group separately. We have chosen 5 user groups as previous
studies have indicated that this complies with the workload
structure in real installations, see Song et al. [12]. For more
details on our user group selection see Franke et al.[7]. The
Proportional Resource Consumption of Waiting Queue for
User Group i (PRCWQi(t)) represents the percentage of
the estimated resource consumption of the waiting jobs of
the specified user group in relation to the estimated resource
consumption of all waiting jobs.
Finally, we exemplarily define a scheduling objective that
considers user priorities. It is based on the Overall Utilization
(U), the Average Weighted Response Time (AWRT) over
all jobs of all users, and the AWRT for each user group
separately, see Franke et al. [7]. The machine owner is able
to flexibly define an individual objective function, based on
these elements.

IV. SCHEDULING STRATEGIES BASED ON GENETIC
FUZZY SYSTEMS

Before the different rule base encoding schemes are ex-
plained in detail, we introduce the encoding of individual
rules and describe the computation of the final Fuzzy con-
troller output.

A. Coding of Fuzzy Rules

Our Genetic Fuzzy Systems are based on the traditional
Takagi-Sugeno-Kang (TSK) model [13] of Fuzzy systems.
The coding schemes and learning techniques are adapted and
slightly modified from the work of Juang et al. [5] and Jin
et al. [14].
For a single rule Ri, i ∈ {1, . . . Nr}, every feature ω of
all NF features is modeled using a Gaussian Membership
Function (µ(ω)

i , σ
(ω)
i )-GMF

g
(ω)
i (x) =

1

σ
(ω)
i

√
2π

exp

−(x− µ
(ω)
i )2

2σ
(ω)
i

2

 .

A feature is represented by a pair of real values µ
(ω)
i and

σ
(ω)
i . The µ

(ω)
i value is the center of the GMF that is covered

by the rule Ri. Therefore, this value defines a domain in the
feature space where the influence of the rule is very high.
Note that for increasing σ

(ω)
i values, the peak value of the

GMF decreases while the enclosed area remains constant.
Using this property of a GMF, we are able to reduce the
influence of a feature within a rule completely by increasing
σ

(ω)
i . Theoretically for σ

(ω)
i →∞, a feature has no influence

for this rule anymore. With this approach, it is also possible
to establish a kind of default value that is used if no other
peaks are defined in a feature domain. Based on this feature
description, a single rule can be described by

Ri =
{

g
(1)
i (x), g

(2)
i (x), . . . g

(NF )
i (x), ~Ωi(Ri)

}
.

The consequence part ~Ωi of every rule Ri, i ∈ {1, . . . Nr},
includes a weighted recommendation for all NΩ possible out-
puts. Therefore, the consequence part of rule Ri is described
by a vector

~Ω(Ri) =
(

wi1 wi2 . . . wiNΩ

)T
.

We restrict the possible weight values to elements of the set
{−5, −1, 0, 1, 5}. The value −5 represents a particularly
unfavorable influence while 5 is particularly favorable one.
The other possible weights can be interpreted accordingly.
We use a non-linear weight scaling in order to force distinct
recommendations. When considering the superposition of
those weights similar weights may lead to almost indistin-
guishable recommendations. We also include 0 as possible
weight to express that a rule behaves completely neutral
with respect to the recommendation of the corresponding
scheduling strategy for a given system state. Here,

RB = {R1, R2, . . . RNr}

is a complete rule base consisting of Nr rules.

B. Computation of the Controller Decision

For a given system state, we compute the superposition
of the weighted output consequence parts of all rules. The
system state is represented by the actual feature vector

~x =
(

x1 x2 . . . xω . . . xNF

)T

of NF feature values. We compute the degree of membership
φi(xω) = g

(ω)
i (xω) of the ω-th feature of rule Ri for all Nr

rules and all NF features. The multiplicative superposition
of all these values as ”AND”-operation leads to an overall
degree of membership

φi(~x) =
NF∧
ω=1

g
(ω)
i (xω)

=
NF∏
ω=1

1

σ
(ω)
i

√
2π

exp

{
−(xω − µ

(ω)
i )2

2σ
(ω)2

i

}
(1)

for rule Ri. For all Nr rules together, the corresponding
values φi(~x) are collected in a membership vector

~φ(~x) =
(

φ1(~x) φ2(~x) . . . φNr
(~x)

)
.

Next, we construct a matrix C˜ NΩ×Nr of the weighted con-

sequences ~Ω(Ri), i ∈ {1, . . . Nr} of all rules by using the
weighted consequence vectors for all individual rules Ri.
This yields

C˜ NΩ×Nr =
[

~Ω(R1) ~Ω(R2) . . . ~Ω(RNr
)

]
.

Now, we can compute the weight vector ~Ψ by multiplying
the membership vector ~φ(x) by the transposed matrix C˜ T :

~Ψ = ~φ(~x) · C˜ T =
(

Ψ1 Ψ2 . . . ΨNΩ

)
.

The vector ~Ψ contains the superpositioned weight values for
all NΩ possible scheduling strategy recommendations, that



is, ~Ψ contains 13 elements.
Finally, we choose the scheduling strategy with the highest
overall value as the output of the rule base system, that is

arg max
1≤h≤NΩ

{
~Ψh

}
.

C. Encoding Schemes for Different Design Concepts

For the Michigan approach, we apply the following encod-
ing scheme of Equation 2 where each individual represents
a single rule

[

Ri︷ ︸︸ ︷
µ

(1)
i σ

(1)
i︸ ︷︷ ︸

GMF

, µ
(2)
i σ

(2)
i , . . . µ

(NF )
i σ

(NF )
i , ~Ω(Ri)︸ ︷︷ ︸

Ω1 ... ΩNΩ

] (2)

This results in a fixed length for each single rule. But for
interaction, the number of rules per systems must be specified
in advance. The number of elements in the object parameter
vector l of an individual is determined by the number of
features, output decisions and number of rules. It can be
computed by l = Nr (2 ·NF + NΩ). For the Michigan
approach, where Nr = 1 holds, this results in a fixed number
of 2 · 7 + 13 = 27 parameters per individual.
Contrary, the Pittsburgh approach encodes a whole rule base
in each individual, see the representation in Equation 3.

[

R1︷ ︸︸ ︷
µ

(1)
1 σ

(1)
1︸ ︷︷ ︸

GMF

, µ
(2)
1 σ

(2)
1 , . . . µ

(NF )
1 σ

(NF )
1 , ~Ω(R1)︸ ︷︷ ︸

Ω1 ... ΩNΩ

, . . .

. . .

R2 ... RNr︷ ︸︸ ︷
µ

(1)
2 σ

(1)
2 , . . . µ

(NF )
Nr

σ
(NF )
Nr

, ~Ω(RNr
)] (3)

If we assume the same configuration as for the Michigan
approach we must consider Nr = 50 rules which would
result in 50 · (2 · 7 + 13) = 1350 parameters. However, after
different experiments [7] we also found good results for the
Pittsburgh approach with Nr = 10.
The CCA uses the same encoding scheme as the Pittsburgh
approach but consists of two distinct species. We use one
species for the sorting of the waiting queue and a second
species for the determination of the scheduling algorithm [7].

V. EVALUATION AND DISCUSSION

To compare the three different design concepts we use
some workloads from real installations as input data [7] and
apply a user group definition based on resource consumption,
which distinguishes 5 different user groups, as explained
by Ernemann et al. [15]. For our analysis, we exemplarily
define 2 different priority schemes that are represented by
the following 2 objective functions:

f1 = 10 · AWRT1 + 4 · AWRT2

f2 = 2 · AWRT1 + 10 · AWRT3

A short AWRT value for a user group corresponds to a
good schedule quality for this group. Here, f1 prioritizes user
groups 1 and 2, with user group 1 having a higher priority

than user group 2 and f2 prioritizes user group 3 over group 1
over all other user groups.

A. Relative Comparison

First, we show the achieved objective value for all three
design concepts compared to the commonly used EASY stan-
dard strategy [10]. We restrict our comparison to the EASY
algorithm as this method performs best for the examined
workloads. However, note that EASY does not support any
priorities. In Table I, we show the results of the Symbiotic
evolution (SYMB), the Pittsburgh approach (PITTS), and
the Cooperative Coevolutionary algorithm (CCA) compared
to EASY. We train all systems with the Cornell Theory
Center (CTC) workload trace which is available from the
Standard Workload Archive [16].
For f1 the Genetic Fuzzy systems achieve the desired pri-
oritization of user groups 1 and 2, as the AWRT values are
significantly shorter for these user groups. Obviously, the
non-preferred user groups have to pay the price with their
increasing response times while the overall utilization (U)
remains unchanged. Objective f1 uses a prioritization

Method AWRT1 AWRT2 AWRT3 AWRT4 AWRT5 U
SYMB 16.64 12.7 2 -26.35 -153.62 0
PITTS 16.83 12.70 1.54 -28.3 -155.1 0
CCA 16.76 13 3.17 -24,65 -135.38 0

TABLE I
RELATIVE IMPROVEMENTS OF AWRT (IN %) AND UTIL (IN %) FOR

THE CTC WORKLOAD AND f1 FOR SYMBIOTIC/MICHIGAN (SYMB),
PITTSBURGH (PITTS), AND CCA COMPARED TO EASY.

scheme that corresponds to the resource consumption of
the user groups. It seems to support easy optimization as
all systems yield almost similar optimization results, see
Table II. However, this is not true for objective f2 where the
low-consuming user group 3 has a higher priority than user
group 2 requiring more total resources, see Table II. While
there are improvements for all approaches CCA clearly
outperforms SYMB and PITTS.

SYMB PITTS CCA
Objective f1 15.45% 15.57% 15.62%
Objective f2 7.44% 7.36% 9.1%

TABLE II
RELATIVE OBJECTIVE IMPROVEMENTS FOR THE CTC WORKLOAD,
SYMBIOTIC/MICHIGAN (SYMB), PITTSBURGH (PITTS), AND CCA

COMPARED TO EASY.

B. Comparison to Pareto Front

After addressing the relative improvements that are pos-
sible with the three design concepts, we focus on the com-
parison relative to the best achievable solutions. To this end,
we represent the distance of the resulting schedules from
the approximated Pareto front of all feasible schedules for a
simulated workload, as generated by Ernemann et al. [15]. As
this is only an approximation of the Pareto front, schedules
of this front are not guaranteed to represent the real bounds.



On the other hand, the approximations are generated offline
(using knowledge of the future). Online methods (as applied
here) may not be able to achieve as good results. Ignoring
these restrictions we refer to this front as the best achievable
solutions for our scheduling problem. In Figure 2, the results
for objective f1 are depicted and it becomes obvious that it is
possible to come very close to the approximated Pareto front.
This is different for the objective f2 as shown in Figure 3. It

Fig. 2. AWRT1 and AWRT2 Compared to Pareto Front Approximation of
the CTC workload for EASY, SYMB, PITTS, and CCA.

is still possible to come closer to the Pareto front than EASY
with all approaches. All genetic Fuzzy systems outperform
iterative rule learning methods, see Franke et al.[7], [8].

Fig. 3. AWRT1 and AWRT3 Compared to Pareto Front Approximation of
the CTC workload for EASY, SYMB, PITTS, and CCA.

C. Computational Effort

It is important to realize that the optimization and adapta-
tion processes of all three concepts is time consuming. But
the runtime of the resulting scheduling algorithm is negligi-
bly small compared to the computational effort that has to
be spend for the optimization. We realize PITTS and CCA
with a (3+21)-Evolution Strategy and run 40 generations
in order to obtain good results. The resulting number of
(3 + 21 · 40) = 843 objective evaluations is relatively small
for an evolutionary optimization. However, if we consider
the long evaluation times of approximately 4 hours per
simulation the complete optimization takes about 5 months

for a single objective function and workload. For SYMB
the computational effort is even higher than the PITTS and
CCA as we use a (50+350)-Evolution Strategy. The large
population size is required to guarantee a sufficient number
of participations for each individual within a temporally
composed Fuzzy system, see Juang et al. [5]. In order to
ensure this number of participations, we create 70 Fuzzy
systems per generation [8]. This results in 70 · 40 = 2800
simulations that are required to evolve 40 generations. Thus,
it takes approximately 15 months to optimize one objective
function for a single workload using the SYMB approach on
a single machine. The computational effort is unacceptably
high compared to the Pittsburgh based concepts. Only with a
parallel execution it is possible to obtain all results presented
in this paper within a reasonable time. Therefore, we have
executed the simulations of the population evaluations in
parallel on a 120 node cluster.

D. Convergence Behavior

As the computational effort is relatively high for all
approaches a fast convergence to a good solution is highly de-
sirable. In Figure 4, the development of the objective function

5 10 15 20 25 30 35 40
7.22

7.23

7.24

7.25

7.26

7.27

7.28
x 105

Generations

 

 
SYMB
PITTS
CCA

Fig. 4. Fitness Development During the Optimization for All Three
Approaches, Objective f1, and the CTC Workload Trace.

is depicted versus the number of generations. Apparently,
SYMB converges slowly and, as already discussed, the final
solution quality is worse than PITTS or CCA. Furthermore,
the progress to the final solution is characterized by only a
few large improvement steps. Contrary, both Pittsburgh based
approaches converge in smaller steps towards the final result.
Those concepts seems to adapt better to our problem as also
intermediate solutions are found during optimization. The
best final result is achieved by CCA which also performs
best in terms of convergence.

E. Robustness

As a final aspect, we focus on the robustness of the
derived rule bases. In Figure 5, we display the objective
improvements of all used approaches compared with EASY



by optimizing the different strategies again for the CTC
workload and applying the resulting scheduling strategies to
three different but similar workloads. Those were recorded at
the Swedish Royal Institute of Technology (KTH), the Los
Alamos National Lab (LANL), and the San Diego Supercom-
puter Center (SDSC00). The results clearly indicate that only

Fig. 5. Relative improvements of objective f1 for all design methods
related to EASY, and all workloads using the strategies optimized for the
CTC workload trace.

the SYMB and CCA should be used in such scenarios. The
PITTS approaches fails for the KTH and the SDSC00 work-
load traces. Note that we limited the y-axis to -60% but the
real objective deterioration is about -150%. We assume that
SYMB is better suited to adapt to the different scheduling
scenarios but it requires 50 rules per rule base to achieve
these results [8]. As already shown, 10 rules are enough
for PITTS to generate very good schedules for a certain
workload individually. However, it seems that 10 rules are not
enough to generate robust scheduling strategies. The CCA
uses 10 rules for each subpopulation. The achieved results
indicate that this case is not too specialized on a specific
workload as it is also able to generate good schedules for
the other workloads. The quality of the generated schedules
for SYMB and CCA are very similar. Thus, we recommend
the CCA approach for a robust rule base generation as the
number of required simulations is in this case much smaller
compared to SYMB.

VI. CONCLUSION

In this paper, we compared three design concepts for Ge-
netic Fuzzy Systems applied to a real-world online schedul-
ing. We have defined two objectives that express different
user group prioritization for the underlying scheduling prob-
lem. Within this study it becomes apparent that the Fuzzy
system created with a Cooperative Coevolutionary algorithm
based on the Pittsburgh approach (CCA) performs best.
The CCA outperforms the Symbiotic Evolution (SYMB)
for the second examined objective, convergence behavior,
and the computational effort which is very high due to the
large number of required simulations while the robustness
analysis shows almost equal results for both approaches. On

the other hand, the traditional Pittsburgh approach (PITTS)
shows worse results than CCA for the second objective,
the convergence behavior, and the robustness while the
computational effort is identical. Especially, for robustness
where the rule base is applied to three similar workloads,
PITTS fails completely for two workloads. Therefore, the
decomposition of the whole problem into two subproblems
and the application of the CCA approach is recommended
for the examined problem.

REFERENCES

[1] F. Hoffmann, “Evolutionary algorithms for fuzzy control system
design,” Proceedings of the IEEE, vol. 89, no. 9, pp. 1318–1333,
September 2001.

[2] A. Bonarini, Fuzzy Modelling: Paradigms and Practice. Kluwer
Academic Press, 1996, ch. Evolutionary Learning of Fuzzy rules:
competition and cooperation, pp. 265–284.

[3] S. F. Smith, “A learning system based on genetic adaptive algorithms,”
Ph.D. dissertation, Department of Computer Science, University of
Pittsburgh, 1980.

[4] O. Cordón, F. Herrera, F. Hoffmann, and L. Magdalena, GENETIC
FUZZY SYSTEMS - Evolutionary Tuning and Learning of Fuzzy
Knowledge Bases, 1st ed., ser. Advances in Fuzzy Systems - Appli-
cations and Theory, L. A. Zadeh, Ed. Singapore: World Scientific,
July 2001, vol. 19.

[5] C.-F. Juang, J.-Y. Lin, and C.-T. Lin, “Genetic Reinforcement Learning
through Symbiotic Evolution for Fuzzy Controller Design,” IEEE
Transactions on System, Man and Cybernetics, vol. 30, no. 2, pp.
290–302, April 2000.

[6] J. Paredis, “Coevolutionary computation,” Artificial Life, vol. 2, no. 4,
pp. 355–375, 1995.

[7] C. Franke, J. Lepping, and U. Schwiegelshohn, “On Advantages of
Scheduling Using Genetic Fuzzy Systems,” in Proceedings of the 12th
Job Scheduling Strategies for Parallel Processing, ser. Lecture Notes in
Computer Science (LNCS), E. Frachtenberg and U. Schwiegelshohn,
Eds., vol. 4376. Springer, January 2007, pp. 68–93.

[8] C. Franke, J. Lepping, F. Hoffmann, and U. Schwiegelshohn, “De-
velopment of Scheduling Strategies with Genetic Fuzzy Systems,”
University Dortmund, Tech. Rep. 0106, May 29 2006, iSSN 0941-
4169.

[9] T. Bäck and H.-P. Schwefel, “An overview of evolutionary algorithms
for parameter optimization,” Evolutionary Computation, vol. 1, no. 1,
pp. 1–23, 1993.

[10] D. G. Feitelson and A. M. Weil, “Utilization and Predictability in
Scheduling the IBM SP2 with Backfilling,” in Proceedings of the 12th
International Parallel Processing Symposium and the 9th Symposium
on Parallel and Distributed Processing. IEEE Computer Society
Press, 1998, pp. 542–547.

[11] C. Franke, J. Lepping, and U. Schwiegelshohn, “Greedy Scheduling
with Complex Objectives,” in Proceedings of the 2007 IEEE Sym-
posium Series in Computational Intelligence. IEEE Press, 2007, to
appear.

[12] B. Song, C. Ernemann, and R. Yahyapour, “User group-based work-
load analysis and modeling,” in Proceedings of Cluster Computing and
Grid (CCGRID05). IEEE Press, 2005, CD-ROM.

[13] T. Takagi and M. Sugeno, “Fuzzy Identification of Systems and
Its Applications to Modeling and Control,” IEEE Transactions on
Systems, Man, and Cybernetics, vol. SMC-15, no. 1, pp. 116–132,
1985.

[14] Y. Jin, W. von Seelen, and B. Sendhoff, “On Generating FC3 Fuzzy
Rule Systems from Data Using Evolution Strategies,” IEEE Transac-
tions on System, Man and Cybernetics, vol. 29, no. 6, pp. 829–845,
December 1999.

[15] C. Ernemann, U. Schwiegelshohn, N. Beume, M. Emmerich,
and L. Schnemann, “Scheduling Algorithm Development
based on Complex Owner Defined Objectives,” Dortmund
University, Germany, Tech. Rep. CI-190/05, 2005, http://sfbci.uni-
dortmund.de/Publications/Reference/Downloads/19005.pdf.

[16] D. G. Feitelson, “Parallel Workload Archive,”
http://www.cs.huji.ac.il/labs/parallel/workload/, April 2007.


