
VIRTUAL ORGANIZATION
MANAGEMENT IN XTREEMOS:
AN OVERVIEW ∗

Erica Y. Yang1, Brian Matthews1, Amit Lakhani1, Yvon Jégou2, Chris-
tine Morin2, Oscar David Sánchez2, Carsten Franke3, Philip Robinson3,
Adolf Hohl4, Bernd Scheuermann4, Daniel Vladusic5, Haiyan Yu6, An
Qin6, Rubao Lee6, Erich Focht7, Massimo Coppola8

1RAL, STFC, U.K., 2IRISA/INRIA, France, 3SAP Research, CEC Belfast, U.K.,
4SAP Research, CEC Karlsruhe, Germany, 5XLab d.o.o., Slovenia, 6ICT/CAS, China,
7NEC HPC Europe, Germany, 8ISTI/CNR, Pisa, Italy

y.yang@rl.ac.uk, b.m.matthews@rl.ac.uk, a.lakhani@rl.ac.uk, yvon.jegou@irisa.fr, christine.morin@irisa.fr,

oscar.sanchez@irisa.fr, carsten.franke@sap.com, philip.robinson@sap.com, adolf.hohl@sap.com,

bernd.scheuermann@sap.com, daniel.vladusic@xlab.si, yuhaiyan@ict.ac.cn, qinan@software.ict.ac.cn,

lirubao@software.ict.ac.cn, efocht@hpce.nec.com, coppola@di.unipi.it

Abstract XtreemOS aims to build and promote a Linux based operating system
to provide native Virtual Organization (VO) support in the next gener-
ation Grids. XtreemOS takes a different approach from many existing
Grid middleware by: first, recognizing the fundamental role of VO in
Grid computing and hence taking VO support into account from the
very beginning of our design; and, second, getting around the overheads
brought by layers of existing Grid middleware by enabling native VO
support in the Linux operating system. This paper presents our vi-
sion of VOs in a Grid operating system and describes various aspects
of VO management in our system architecture, ranging from lifecycle
management, application execution management, security, to node-level
enforcement mechanisms in operating system.

Keywords: XtreemOS, Virtual Organization (VO), VO Management, Grid

∗We would like to thank the support from the European Commission under IST program
#FP6-033576.



2

1. Introduction
XtreemOS is an European project with the objective to design, imple-

ment, evaluate and distribute an open source Grid OS, named XtreemOS,
which supports Grid applications, and capable of running on a wide
range of underlying platforms, from clusters to mobiles. The goal is to
provide an abstract interface to its underlying local physical resources,
as a traditional OS does for a single computer. While much work has
been done to build Grid middleware on top of existent OS, little has been
done to extend the underlying OS to support Grid computing, for exam-
ple, by embedding important basic services directly into the OS kernel.
The approach being investigated is to base XtreemOS on existing Linux.
A set of system services, extending those found in the traditional Linux,
will provide users with all the Grid capabilities associated with current
Grid middleware, but fully integrated into the OS.

A key feature of XtreemOS is native support for Virtual Organiza-
tions. The term Virtual Organization (VO) is well-established within
the context of economics. The typical goals of a VO include the tempo-
ral collaboration of several entities from different departments and their
respective organizations towards achieving a common business objective.
In Grid computing, synergies can be achieved by grouping users (pro-
vided by an identity infrastructure) which share OS- and application-
specific resources and interfaces of computing nodes in a Grid [1].

The exact realisation of a VO differs from project to project. Some ap-
proaches concentrate on the legal or contractual arrangements between
the participating entities. Other task-oriented approaches emphasize the
workflow to achieve a goal. VOs can range from long-lived collaborations
with many users (typically found in large-scale scientific applications) to
short-lived, dynamic ventures to achieve one task between a small num-
ber of participants (typically commercial scenarios). A general purpose
Grid OS should take a flexible approach to satisfy as wide a range of
applications as possible; the use cases in XtreemOS reflect this diversity.

Thus, XtreemOS defines a minimal definition of the features of VOs
and provides a toolbox which can be configured to the needs of the ap-
plication. Key components of a VO are: VO administrators; a set of
users and resources in different domains; a set of roles which users and
resources can play in the VO; a set of policies on resource availability
and access control; an expiry time of the VO. VO goals or workflows
are not modeled, though XtreemOS tools allows these to be supported
at application level. This will typically require enforcement of policies,
event notification of the completion of processes, and monitoring of ex-
ceptional events, such as jobs still executing at VO expiration.



Virtual Organization Management in XtreemOS 3

2. Requirements
The requirements for XtreemOS have been derived from a range of

14 applications [3]. In the following, we focus on requirements directly
related to VO management and security services.

Three different roles are involved in managing VOs: Domain admin-
istrators maintain a pool of resources that are allowed to be integrated
into a VO. They have the ultimate control over what resources will be
available to a VO and regulate how a VO user uses its resources, and
they ensure the reliability and security of resources being provided to
VOs. VO administrators compose VOs from the resources provided by
various domains, and they manage (e.g. create, delete, and modify) user
accounts and the permissions VO users have within a VO. The role of
the VO administrator can be assigned to one or more persons from the
participating institutions.

Users can register with one or more VOs so that they can utilize
resources from different VOs concurrently and independently. An indi-
vidual may have different roles and be assigned with different capabilities
in different VOs. To obtain a VO user account it is not necessary to have
a pre-existing local user account in one of the domains belonging to the
VO. Moreover, it must be possible to transfer data, files and directories
between local and VO accounts (e.g. by copy or mount). Overlapping
VOs are required, i.e. multiple VOs can be established on the same node.
The applications require exchange of information between different VOs
by means of messages (also instant messages), shared memory and data
transfer.

It is required that VO management actions be highly automated, al-
lowing them to be completed in a specified time threshold, typically to
the order of a few seconds. It must be possible to guarantee the life-
time of a VO for a specified or an unspecified amount of time (until a
notification e.g. by a user or application). VO management must be
supported by an API, a command line interface and a GUI including
VO monitoring facilities.

XtreemOS has to allow for dynamically changing the composition of
VOs during application runtime, e.g., if certain computing resources fail.
In such circumstances, the unavailable resources need to be automati-
cally substituted by alternative resources also including a migration of
the affected running application components.

Data stored on resources must only be accessible by users and admin-
istrators that are members of a VO with the appropriate access rights.
Confidential data communicated must be encrypted. Loss of integrity of
stored data must be preventable and detectable. Data should be hashed



4

and digitally signed by a trusted key stored on the OS. The integrity of
transferred data must be validated before being committed (need for an
OS reference monitor mechanism). The OS must be capable of signing
and verifying signatures of data in an end-to-end manner. A transac-
tion framework is necessary, considering the distributed nature of the
resources. Users should authenticate via single sign-on to gain autho-
rized access to VO resources. Administrators are capable of recording
the usage (by whom and when) of resources without users being able
to deny (repudiate) such usage. This includes a secure audit service
with the ability to the record timestamps and the VO in which a certain
resource was used.

Isolation of VO users: As users may be involved in multiple VOs, it
is then necessary to separate their user data and have means of deter-
mining which VOs they are currently working in, when accessing data.
Isolation of data per-VO: Data stored on the same resource for different
VOs must show non-interference. Isolation of services per-VO: Parties
in different VOs must not be able to recognize that they are sharing re-
sources nor can they gain knowledge of what other parties are doing with
those resources. If one of two virtualized services on the same physical
resources fails, this must not interfere with the other. It is proposed to
investigate in how far virtual machines or containers (e.g. provided by
OpenVZ) can be used for the purpose of isolation.

3. VOs in XtreemOS Architecture
This section first sums up the VO management challenges addressed

by XtreemOS and then, describes various aspects of VO management in
our system architecture, ranging from lifecycle management, application
execution management, security, to node-level enforcement mechanisms.

3.1 Challenges
XtreemOS aims to provide native support for the management of VOs

in a secure and scalable way, without compromising on flexibility and
performance. Several key challenges are identified from both the require-
ment analysis and investigation of most state-of-art Grid VO solutions.

Interoperability with diverse VO frameworks and security mod-
els. Different VO management frameworks and security models have
been developed so far and new ones keep on emerging. The diversity
of their implementations is embodied in their adoption of different user
identities (e.g. X.509 end user certificates, Shibboleth handles), different
message sequences (e.g. push, pull and agent models), different places



Virtual Organization Management in XtreemOS 5

to convey security attributes (e.g. proxy certificates or SAML tokens)
and different policy models (e.g. role-based access control). XtreemOS
must be able to interoperate with, rather than replace these existing so-
lutions and even traditional local security mechanisms (e.g. Kerberos).
It is a challenge that the operating system-level abstraction of VOs in
XtreemOS allows for integration of various existing VO structures.

Flexibility of policy languages. XtreemOS puts emphasis on that
both scientific and enterprise business applications are equivalently sup-
ported. Users from these two representative application domains have
different views of policies in a VO, in terms of subjects (users), objects
(resources), access rights, Service Level Agreement (SLA) and QoS con-
straints. Therefore VO policies in XtreemOS have to be expressive and
flexible enough to accommodate various levels of resource access rules.

Scalability of management of dynamic VOs. In order to sup-
port large numbers of users in a dynamic environment (dynamicity of
resources and of users) while still providing accurate isolation of these
users, solutions such as rather static files containing user information
must be avoided. For example, when VOs are dynamically changed, it
is impractical for the VO manager to update gridmap files on all re-
sources, due to the heavy admin burden caused as well as the difficulty
to maintain data consistency.

Strong isolation, access control and auditing. Some applica-
tions request for strong isolation of user applications on the Grid: hiding
user identities, protecting files and processes, strict division of perfor-
mance load, and so on. These requirements are typical for most of the
industrial applications. In some environments this ability to generate
strong isolated execution environment could even be used to isolate indi-
vidual processes on a single resource. Implementing such requirements is
difficult without operating system support. Furthermore, a secure Grid
system must provide strict access control from the service level down to
the system object level (files, sockets, ...). In all cases, it must be possi-
ble to monitor and log operating system service usage as well as system
object accesses. The audit log must contain references to user creden-
tials (security ticket) and be securely provided to the resource owner as
well as the VO manager.

3.2 VO Management (VOM)
In this paper, we use the concept, VO Management (VOM), to cover

all the infrastructural services that are needed to manage the entities



6

involved in a VO and ensure a consistent and coherent exploitation of
the resources, capabilities, and information inside the VO under the gov-
ernance of the VO policies. A VO policy is defined as an authorization
statement that describes what activities a subject (e.g. an entity in a
VO) is allowed to perform on an object (e.g. resources) with certain
constrains (e.g. time, location), if there is any.

There are several stages of VO lifecycle: VO identification, VO for-
mation, VO operation, VO evolution, and VO dissolution. VOM plays
a different role in different stages of this lifecycle. During the identifica-
tion stage, VOM is mainly responsible for user management (e.g. regis-
tration, attribute management) and VO policy specification (e.g. con-
strains on resource usages). During the formation stage, VOM involves
in the processes of resource matching, negotiation and establishment of
Service-Level Agreements (SLAs) by applying VO policies. The opera-
tion stage leverages the information made available during the previous
stages. In this stage, VOM coordinates logging, accounting, auditing
operations on nodes and ensures the availability of such information, if
needed. For jobs that require interactive sessions, VOM also provides
authorized users with facilities (e.g. credentials) to access the sessions
of runtime applications. The evolution stage takes place when the VO
is altered during its lifespan, for example, by a change in the participat-
ing entities or in their conditions of use. During the last stage, VOM
ensures the deletion of non-persistent information (e.g. temporary files
and accounts) and the reclamation of credentials.

3.3 VOM and AEM
In XtreemOS, application execution is managed by Application Ex-

ecution Management (AEM) services [2]. AEM services can be con-
ceptually grouped into two types of services: Job Management Services
(JMSs) and Resource Management Services (RMSs). JMSs cover all the
job related tasks, such as job scheduling, monitoring, event handling,
and execution management. JMSs are mostly operated on an individ-
ual job basis, that is, these services do not have a global view of the
system. RMSs cover all the resources related tasks, including resource
monitoring, selection, matching, negotiation, and allocation. This sec-
tion focuses on the interactions between VOM and AEM during the job
submission stage which is illustrated in Figure 1.

VOM consists of two main components: authentication manager and
authorization manager. The job submission process starts from a VO
user submitting a job request to the authentication manager. The au-
thentication is performed against the credentials attached to the job



Virtual Organization Management in XtreemOS 7

VOM AEM

Job 
Management Services (JMSs)

Resource
Management Services (RMSs)

VO user

Authentication
Manager

Authorization
ManagerVO policy

1. Job request with
user credentials

2. Authenticated
job request

3. Resource
request

6. Authorized
list of resources

4. Initial list
of resources

5. Authorized list
of resources

7. Job
submission

Figure 1. Interactions between VOM and AEM during the Job Submission Stage

request. Once a user is authenticated, the job request is forwarded to
JMSs, which in turn contacts RMSs to select an initial list of resources.
The selection is based on the job description and resource characteris-
tics. The list is then subject to the scrutinization of the authorization
manager to ensure that the job request and selected resources conforms
to the overall VO policies in this context. As a result of the policy check-
ing, an authorized list of the resources is then sent back to RMSs which
will forward it to JMSs for conducting resource negotiation. Once the
resources are successfully negotiated, JMSs will submit the job to RMSs
which will then be responsible for launching the job on remote nodes.

In this process, the functionalities of VOM are to ensure that: a)
only authenticated VO users can access AEM services; and b) the job
execution will conform to VO policies by engaging the authorization
manager in the process of resource selection.

3.4 Security
Because VOM involves in different stages of a VO lifespan, the design

and implementation decisions on security services will have a significant
impact on the efficiency and quality of the final XtreemOS operating
system. This section discusses some of the key issues.

In Figure 1, when a user initiates a job request, the request is shown
to be bundled with the user’s credential for authentication purpose. In
practice, this can be implemented in two different ways. The usual
approach is to implement the authentication independent from underly-
ing operating system level authentication. This is a popular approach
adopted by many existing Grid middleware, e.g. Globus. It has the
simplicity of implementation but comes with the complexity of config-
uration and management. That is, people who provide Grid services



8

have to set up and manage two largely independent layers of services. In
reality, it is common that more layers of services (e.g. Web services on
top of Grid services) are introduced to establish extra levels of controls.

In XtreemOS we propose an alternative approach by aiming to in-
tegrate VOM as part of the OS. More specifically, VOM can be imple-
mented as a service that can be integrated directly with existing authen-
tication infrastructure. The benefits of this approach are described as
follows. First, it reduces the management and performance overheads
introduced by the layers of controls. Second, the hassle of accessing VO
resources can be reduced. XtreemOS targets for both simple applications
(i.e. a single request for the entire execution) as well as complex appli-
cations that involve interactivity and multiple execution requests, for
example, for debugging purpose. Because of this reason, we anticipate
that the integration of VOM as an OS level service should streamline
the session management required for managing complex application.

3.5 Node-Level Enforcement
The policies specified by a VO, such as security, resource limitations,

scheduling priorities and rules on how shared resources could be used by
VO members, will be finally checked and ensured at resource nodes.

In order to adapt to different VO models and reduce kernel code
changes, XtreemOS will use the PAM (Pluggable Authentication Mod-
ules) system [7], which allows a system administrator to add (possibly
VO-specific) authentication methods by installing new PAM modules.

Local user accounts in XtreemOS are allocated dynamically on each
resource to match the actual global users exploiting that resource. The
XtreemOS PAM plugins would be in charge of implementing (or inter-
facing to) a local service allocating fresh local UID/GID couples upon re-
quest, of managing local UID names, of managing user home-directories
(either from XtreemFS, the XtreemOS Grid file system [4], or on a
scratch directory) and of managing the user credentials for XtreemFS
access. The dynamic allocation of user accounts ensures XtreemOS scal-
ability and reduces the complexity of VO management: no need to con-
figure resources when users are added or removed from VOs.

During session initialization, XtreemOS stores the user security ticket
in the kernel session keyring: this ticket will be associated to all local
processes generated by the user request (fork, execve, etc.), and will be
retrieved each time the global user identity or credentials need to be
exploited: access to local or external service, auditing, ...

Dynamic management of local UID/GID also provides some level of
isolation between Grid users: they do not share access to local files,



Virtual Organization Management in XtreemOS 9

and it is possible to hide the real identity of a user in the local name
space. XtreemOS does not exclude the use of virtual machines, or pro-
cess containers, to provide stronger isolation properties, like performance
isolation (e.g. hiding CPU usage, memory limits).

The policy enforcement points provide access control and auditing
on operating system services. Fine grain access control is also possible
when the application activity generates requests to external services.
This is the case for XtreemFS or NFSv4 filesystems. Fine grain access
control and auditing on operating system objects (processes, sockets,
...), requiring the support of the Linux kernel, can be provided through
the LSM (Linux Security Module framework).

4. Related Work
This section briefly discusses two exemplary tools that are relevant to

XtreemOS in the area of VO management.
VOMS [5] is an important VO reference implementation to XtreemOS

because it is currently a popular approach to integrate VO information
(e.g. a user’s roles in a VO) into node-level enforcement mechanisms.

However, managing VOMS effectively is an non-trivial task because
authorization decisions are often a result of a joint process between the
VOMS server (participating in the form of VOMS credentials) and nodes.
Because both node policy and configuration will be taken into account,
it is difficult to figure out what privileges a user has at a given time for
a certain job. This is a practical issue which can be a potential hurdle
for the future acceptance of XtreemOS.

In order to make node-level access control and account mapping deci-
sions, nodes need to be knowledgeable of VO properties (e.g. roles and
groups). However, managing such knowledge consistently and coher-
ently can be non-trivial. This becomes a potential scalability problem
for large VOs with a significant number of properties. It also makes it
difficult to create new VOs and introduce new properties dynamically.

CAS takes control over the policy specification by explicitly spelling
out the relationship between VO users and resources [6]. CAS represents
a push model of enforcing VO policies because its policy enforcement is
decoupled from VO information (e.g. user groups/roles). Therefore,
it is comparatively easy to create dynamic VOs using the CAS model.
However, it is not always easy to figure out what VO resources users
need to use in advance.

Overall, VOMS and CAS represent two different ends of the spec-
trum. VOMS is lean to a pull model where access control is done at
nodes by pulling policy information on demand (i.e. from the VOMS



10

credentials) whilst CAS is a push model where authorization decisions
are being pushed to nodes. Both are complementary to each other. Be-
cause XtreemOS aims to provide generic OS level support for Grids, we
are investigating a combined use of both models in our system.

5. Conclusions
In this paper, we have described the outcome of the first stage of the

XtreemOS project which has concentrated on developing requirements
and initial architectural design of VO support, at both the kernel level
and within the Grid support services of XtreemOS. This work is ongoing.
The initial prototype of XtreemOS which will provide the basic instan-
tiation of this architecture is under implementation. This will then be
tested on a variety of use cases and further refined.

Further extensions to the basic VO support are planned. These would
include: mechanisms for federated authentication; trialing of expressive
policy languages; the role of virtualisation to support highly secure com-
mercial VOs; the integration of trust domains. Further, we regard it an
essential for a practical system that there should be some assurance pro-
vided that the systems does meet recognised security criteria. Work
is ongoing to derive a systematic analysis of threats to the XtreemOS
system, with a view to validating the integrity of XtreemOS.

References

[1] Ian Foster, Carl Kesselman and Steven Tuecke. The
Anatomy of the Grid Enabling Scalable Virtual Organizations.
http://www.globus.org/alliance/publications/papers/anatomy.pdf

[2] XtreemOS consortium. Requirements and specification of XtreemOS services
for Application Execution Management. Deliverable D3.3.1, November 2006.
http://www.xtreemos.org/publications/public-deliverables/.

[3] XtreemOS consortium. Requirements Capture and Use Case Scenarios. De-
liverable D4.2.1, January 2007. http://www.xtreemos.org/publications/public-
deliverables/.

[4] XtreemOS consortium. The XtreemOS File System. Requirements
and Reference Architecture. Deliverable D3.4.1, December 2006.
http://www.xtreemos.org/publications/public-deliverables/.

[5] DataGrid VOMS (release v0.7.1). http://edg-wp2.web.cern.ch/edg-
wp2/security/voms/

[6] CAS in Globus 4.2. http://www.globus.org/toolkit/docs/development/4.2-
drafts/security/cas/

[7] Andrew G. Morgan and Thorsten Kukuk. The Linux-PAM guides.
http://www.kernel.org/pub/linux/libs/pam/Linux-PAM-html/.


