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Abstract— We present a methodology for automatically gener-
ating an online scheduling process for an arbitrary objective with
the help of Evolution Strategies. The scheduling problem com-
prises independent parallel jobs and multiple identical machines
and occurs in many real Massively Parallel Processing systems.
The system owner defines the objective that may consider job
waiting times and priorities of user groups. Our scheduling
process is a variant of the simple and commonly used Greedy
scheduling algorithm in combination with a repeated sorting of
the waiting queue. This sorting uses a criterion whose parameters
are evolutionary optimized. We evaluate our new scheduling
process with real workload data and compare it to the best offline
solutions and to the online results of the standard EASY backfill
algorithm. To this end, we partition the user of the workloads
into groups and select an exemplary objective that prioritizes
some of those groups over others.

I. INTRODUCTION

In this paper, we use Evolution Strategies to generate a
method that specifically considers the preferences of the sys-
tem owner when automatically generating an online scheduling
process for Massively Parallel Processing (MPP) systems.
Our scheduling problem is taken from real MPP installations:
Different user submit independent, non-clairvoyant parallel
jobs to the MPP system over time. The scheduling process
is responsible to assign those jobs to the available identical
machines of the MPP system.

Because of limited available processing time, existing online
scheduling processes at real installations mainly use Greedy
scheduling [1] in combination with First-Come-First-Serve and
Backfilling [2] methods. Although those algorithms produce
a very low utilization in the worst case [3] they work well
and fast in practice [4]. Other scheduling algorithms have
been subject of theoretical and simulation studies but are
rarely found at real installations, see Feitelson et al. [5] and
the references therein, as they often require more execution
time. Therefore, our scheduling process is also based on
a Greedy approach. However, the parameters are carefully
chosen to consider the scheduling criterion and the workload.
To this end, we use Evolution Strategies that are introduced
in Section II-B.
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In real-life, system owners have different relationships to
the various users or user groups of their systems. Those rela-
tionships lead to different priorities of the users and their jobs.
This is particularly true as MPP systems increasingly become
part of Computational Grids nowadays [6], that is, low priority
users from other sites request system resources as well. Due
to the existence of different user priorities that may change
over time, there is a growing need for scheduling systems
that can flexibly consider those priorities without reducing
overall system utilization. As existing scheduling strategies
are not suited to satisfactorily handle those priorities, system
owners often set partitions or quotas to prevent lower priority
groups from occupying too many resources. However, those
restrictions tend to reduce machine utilization significantly [7].

We model an MPP system as m identical parallel machines.
This model closely matches reality as differences between
the nodes of an MPP system usually are not significant. Job
scheduling on MPP systems is an online problem as jobs are
submitted over time and the processing time pj of job j is not
available at the release date rj . However system administrators
often require users to provide estimates p̄j of the processing
time pj to determine faulty jobs whose processing times
exceed a rather high estimate. Therefore, the estimates are not
really reliable [8]. Nevertheless, they are used for scheduling
with backfilling as no other data are available [6]. Further,
many parallel jobs on MPP systems are not moldable or
malleable [5], that is, they need concurrent and exclusive
access to mj ≤ m machines during their whole execution.
The user provides the value mj at the release date rj of the
job. The completion time of job j in schedule S is denoted
by Cj(S). As preemption [5] is not allowed in many MPP
systems, each job starts its execution at time Cj(S)− pj .

Our work is based on workload traces of real installations.
Such workload data include all hidden job dependencies,
patterns, and feedback mechanisms. Several workloads of
MPP systems are publicly available, see the standard workload
archive maintained by Feitelson [9]. Unfortunately, they only
partly provide user group information while owner priorities
are missing completely. Therefore, this information is added
to the workloads as explained in Section IV-A. As already
mentioned common scheduling algorithms only support stan-
dard scheduling criteria like utilization or average waiting
time [5]. To demonstrate the ability of our method to support
unconventional criteria we define one in Section IV-B. Finally,
we use two approaches to evaluate the results of our scheduling
process:

1) Comparison with an approximation of the optimal offline
result

2) Comparison with the result of a standard online schedul-
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ing algorithm

Those results are presented in Section V. The paper ends with
a brief conclusion.

II. BACKGROUND

In this section, we first describe the general scheduling sys-
tem and then explain two standard scheduling algorithms for
MPP systems. Afterwards we introduce Evolution Strategies
that are used for parameter optimization.

A. Common Scheduling Concepts

The scheduling system of an MPP system consists of three
major components: the current schedule, the current waiting
queue, and the scheduling algorithm. The current schedule
describes the actual allocation of processor nodes to jobs.
Jobs that have already been submitted to the system but did
not yet start are stored within the waiting queue. The last
component is the scheduling algorithm which is responsible
for the assignment of jobs to available nodes.

Most scheduling algorithms use an ordered waiting queue.
Often a static ordering based on submission times or runtime
estimates is applied. Alternatively, the waiting queue can be
reordered depending on the system state that may include
the current schedule, the waiting queue, and past scheduling
decisions. This reordering approach allows the consideration
of dynamic information, like, for instance, the wait time of a
job an thus lead to complex sorting criteria.

Scheduling algorithms mainly differ in the way they select
the next job from the ordered waiting queue to insert it
into the current schedule. This results in different algorithmic
complexities and correspondingly different execution times. In
the following, we present two standard scheduling algorithms
of real MPP systems. The submission times of the jobs
determine the order of the waiting queue for both algorithms.
Therefore, the ordering of the waiting queue does not require
any additional processing time.

1) First-Come-First-Serve (FCFS): The job on top of the
queue is started as soon as enough idle machines are available
to execute it. Therefore, the algorithm uses a Greedy approach.
It has a constant computational complexity as the scheduler
only tests whether the first job can be started immediately if a
job in the schedule has completed its execution or a new job
has risen to the top of the waiting queue.

2) EASY Backfilling (EASY): If there are enough idle ma-
chines to start job j on top of the waiting queue, this job is
started immediately. Otherwise the algorithm uses the runtime
estimates of all jobs in the current schedule to estimate the start
time of j. Then it tries to find an allocation for the following
jobs of the waiting queue on currently idle machines such that
projected start time of j is not further delayed by using the
runtime estimates of the jobs in the waiting queue. The first job
in the queue that satisfies this so called backfilling condition
is started immediately. Then the rest of the waiting queue is
processed in the same way. EASY is restarted whenever a
job of the current schedule completes its execution. Further, if
EASY is not actively evaluating jobs in the waiting queue then

a newly submitted job is started immediately if it satisfies the
backfilling condition. EASY requires more computational time
than FCFS as the scheduler considers all jobs of the waiting
queue and evaluates the backfilling condition if the top job
cannot be started immediately.

As EASY produces to better scheduling results than FCFS
for the examined workloads it is used as the reference online
algorithm within our study.

B. Evolution Strategies

During the development of the scheduling process, several
parameters must be optimized regarding the previously spec-
ified priorities and the scheduling objective. This offline and
nonlinear optimization problem involves recorded workloads,
nonlinear sorting criteria, and a potentially nonlinear objective
function. To solve it, we apply (µ +, λ)-Evolution Strate-
gies [10] which are a subclass of Evolutionary Algorithms.
Due to our definition of the sorting criteria in Section III-
A, optimization of real valued parameters is required for
which Evolution Strategies are most appropriate, see Bäck and
Schwefel’s comparative studies [11] on Evolution Strategies
and Genetic Algorithms.

Evolution Strategies are random search methods that mimic
the behavior of biological evolution. They operate on a
parental population of µ individuals and apply genetic op-
erators like selection, mutation and recombination to breed λ
offspring individuals from those µ parent individuals. Based
upon the evaluation results, a new population of individuals
is selected. There are two variants of Evolution Strategies:
In case of the (µ, λ)-Evolution Strategy, the new parents are
chosen from the offspring only while the (µ + λ)-Evolution
Strategy also takes the parents into account.

Furthermore, the concept of self-adaptation enables Evolu-
tion Strategies to vary the mutation step size. Thus, in contrast
to the majority of Evolutionary Algorithms, the Evolution
Strategies do not require a separate tuning strategy for the
optimization parameters. Therefore, Evolution Strategies can
be used to explore large real valued solution spaces with few
required evaluations, see Bäck and Schwefel [11]. As in our
study, a single evaluation is computationally expensive the
fast convergence of the optimization algorithm is of major
importance.

Due to the type and the size of the optimization problem,
we cannot apply standard algorithms that guarantee an optimal
result. Certainly, there are other heuristics approaches that
produce good results in practice, like Tabu search [12] or
simulated annealing [13]. However, we do not apply these
algorithms as the search space is relatively small, see Sec-
tion III, and Evolution Strategies have been proven to work
very well in such environments, see Beyer and Schwefel [10].
Moreover, it is not our goal to determine which algorithm is
superior in solving the optimization problem but to show that
online scheduling process can be improved in practice by using
methods of computational intelligence. Further note that those
methods are not part of the actual online scheduling algorithm

114

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Scheduling (CI-Sched 2007)



but they are only used to optimize the parameters of a standard
scheduling process.

III. METHODOLOGY

For the development of an online scheduling process that
supports user group prioritization defined by the system owner,
we use a modified Greedy algorithm: First, jobs are inserted
into the waiting queue after release as usual. Then the waiting
queue is ordered using a sorting criterion with dynamic com-
ponents. Finally, the job at the top of the queue is scheduled
as in the FCFS algorithm, see Section II-A.1. The sorting of
the waiting is repeated whenever a new job is submitted or a
job in the current schedule has completed its execution. Due to
this sorting process, the algorithm has a larger computational
complexity than FCFS. In practice however, the processing
time is rather small as the order of the jobs in the waiting
queue does not significantly change from one sorting process
to the next. In comparison to EASY, both the computational
complexity and the processing time in practice are reduced
significantly.

Greedy scheduling has already been analyzed in theoretical
studies, see, for instance, Schwiegelshohn [3] and Yahyapour.
In most previous studies, the waiting queue is statically or-
dered with the help of job weights that are input data provided
by the users. However in our approach, the parameters of the
sorting criterion are selected without further user specifica-
tions such that the schedule is optimized with respect to the
objective of the system owner.

A. Complex Sorting Criteria

From the analysis of existing workloads as well as from
experiences with parallel computers, it is known that there
is a periodicity in the users’ job submission behavior [14].
The diurnal cycle is an accepted and widely recognized
phenomenon that appears in practically all workloads. This
cycle typically shows higher activity during the day (8 am to
6 pm) and lower activity during the night (6 pm to 8 am).
Normally, the activity is also lower on weekends than on
work days. Furthermore, the characteristics of jobs depend
on their submission time during the day. During normal work
hours, more interactive small jobs are submitted while time
consuming jobs are commonly released towards the end of the
day as they are expected to run during the night. Therefore, we
distinguish the following three classes of scheduling situations
at which the waiting queue is reordered:

• weekends,
• week days between 8 am and 6 pm, and
• week days between 6 pm and 8 am.

In general the sorting criteria may consider parameters that
reflect the wait time of jobs that are already submitted but not
yet started, the current schedule, and past scheduling decisions.
As already mentioned, MPP systems increasing participate
in Computational Grids. Grid scheduling typically uses a
multilayer approach [15]. For security reasons, a higher layer
may not receive detailed feedback information from a lower
layer including data about the current schedule. Therefore, we

only take the wait time into account as a dynamic parameter
as this information is always available.

Next for each of the three scheduling situations above, we
determine a separate sorting criterion from a set of four criteria
with several parameters:

f1(j, t) =
5∑

i=1

[
%i(j) · wi ·

(
Ki + a · t− rj

p̄j
+ b · p̄j

mj

)]

f2(j, t) =
5∑

i=1

[%i(j) · wi · (Ki + a · (t− rj) + b · p̄j ·mj)]

f3(j, t) =
5∑

i=1

[
%i(j) · wi ·

(
Ki + a · t− rj

p̄j ·mj

)]

f4(j, t) =
5∑

i=1

[
%i(j) · wi ·

(
Ki + a · (t− rj) + b · p̄j

mj

)]

With t denoting the system time, the wait time of job j is
(t−rj). Further, function %i(j) distinguishes between different
user groups:

%i(j) =

{
1, if job j belongs to user group i

0, otherwise
(1)

Exemplarily, we discuss sorting criterion f1(j, t). Each user
group i has a different weight parameter wi that is related
to the priority of this user group. Parameter a represents the
importance of the wait time (t − rj) of job j in relation to
the estimated processing time p̄j of job j. Intuitively, it is
usually accepted that a job requiring more processing time
may wait longer. A high value of parameter b emphasizes the
estimated processing time over the degree of parallelism as
it is easier to find an allocation for less parallel jobs even if
jobs have the same resource consumption. While parameters a
and b are independent of the user group their importance can
be influenced for each user group separately with the additive
parameter Ki .

Note that the selection of the sorting criteria candidates is
heuristic. In this study, we used our experiences in scheduling
jobs on MPP systems. The availability of specific knowledge
about a particular MPP system may suggest other criteria. It is
possible that the scheduling results would be different for other
criteria but based on our simulations we do not expect large
deviations. Moreover, a larger number of candidate functions
with more parameters will lead to a significantly increased
optimization effort. Finally, the selection of the sorting criteria
does not limit the general applicability of our method.

Our four sorting criteria result in a total of 12 static
parameters (a, b, {wi,Ki for i ∈ {1, . . . , 5}}). Further, there
are three classes of scheduling states each with a separate
sorting criterion. Therefore, between 33 and 36 parameters are
required for a scheduler as sorting criterion f2(j, t) does not
require parameter wi. The optimal set of parameters depends
on the MPP system and the workload. As already explained
in Section II-B an Evolution Strategy is used to find good sets
of those parameters.
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IV. EXEMPLARY EXECUTION

To demonstrate the feasibility of our approach, we use
workloads from real installations as input data and define
user groups as it is not possible to extract them directly from
workload data. Then we introduce an objective function that
allows a comparison with existing scheduling algorithms. The
parameters of our sorting criteria are trained for this objective
function and the given workloads.

A. Workloads

In this study, we use six well known workload traces that
were recorded at the Cornell Theory Center (CTC), the Royal
Institute of Technology (KTH) in Sweden, the Los Alamos
National Lab (LANL), and the San Diego Supercomputer
Center (SDSC00/ SDSC95/ SDSC96). Each trace provides
request and execution data of all individual job submitted
during a given time period. To allow comparisons between
the results derived from those traces, they are scaled to a
standard machine configuration with 1024 processors by using
the approach of Ernemann et al. [16], see Table I. Note that the
original EASY schedule is not valid for the scaled workload.
Therefore, we apply a discrete event simulation to produce
the EASY schedule of the scaled workload. Although the data
are rather old they include all representative patterns of job
submissions which are still observed in current installations.
Therefore, these workload data still suffice for our purpose.
Unfortunately, user group data are at most partially available

Identifier CTC KTH LANL SDSC00 SDSC95 SDSC96

Machine SP2 SP2 CM-5 SP2 SP2 SP2
Period 06/26/96

-
05/31/97

09/23/96
-
08/29/97

04/10/94
-
09/24/96

04/28/98
-
04/30/00

12/29/94
-
12/30/95

12/27/95
-
12/31/96

Processors
(m)

1024 1024 1024 1024 1024 1024

Jobs (n) 136471 167375 201378 310745 131762 66185

TABLE I

SCALED WORKLOAD TRACES FROM THE STANDARD WORKLOAD

ARCHIVE [9] USING THE SCALING PROCEDURE OF ERNEMANN ET

AL. [16]

in those traces as current schedulers do not exploit those data.
To address the is problem, we partition the individual users
into different groups based on resource consumption. More
specifically, we generate 5 user groups such that user group 1
represents all users with a high resource consumption whereas
all users in group 5 have a very low cumulative resource
demand. To this end, we determine the ratio between the total
resource consumption of user u

RCu =
∑

j∈τ

pj ·mj ·$u(j) (2)

and the total resource consumption of all users

RC =
∑

j∈τ

pj ·mj . (3)

Function $u(j) is similar to function %i(j) and specifies the
relationship between a single job j and user u:

$u(j) =

{
1, if job j belongs to user u

0, otherwise
(4)

The relation between the above defined ratio and the user
groups is described in Table II. Our selection seems to be

User Group 1 2 3 4 5

RCu/RC > 8 % 2− 8 % 1− 2 % 0.1− 1 % < 0.1 %

TABLE II

THE ASSIGNMENT OF USERS TO USER GROUPS DEPENDING ON THE

CORRESPONDING RESOURCE CONSUMPTION RATIO

appropriate as machine utilization and job submission pattern
are often similar among users of the same user group in real
installations. But any other selection of user groups is possible
as well and does not affect the applicability of our approach.

B. Objective Functions

Due to the lack of a scheduling process that supports
priority functions, appropriate scheduling objectives are not
used in real installations. Therefore, we cannot extract such
an objective from the given workloads and must define one.
The system owner is generally free to select any objective
function. This choice may only influence the processing time
of parameter training. Nevertheless, there are a few criteria
commonly used in scheduling policies [5]. The utilization
(UTIL) of an MPP system during the execution of job set
τ reflects the system owner’s point of view and covers the
time period beginning with the start time of the first job in
this set (min

j∈τ
{Cj(S) − pj}) and ending with the completion

time of the last job in this set (max
j∈τ

Cj(S)). Formally, it is

the ratio of machines busy with jobs of this set to available
machines during this time period:

UTIL =

∑
j∈τ

pj ·mj

m ·
(

max
j∈τ

{Cj(S)} −min
j∈τ

{Cj(S)− pj}
) (5)

The Average Weighted Response Time (AWRT) considers
the completion time of all jobs in a set and allows different
prioritization of the individual jobs. If, we weight all jobs
with their resource consumption (pj · mj) as suggested by
Schwiegelshohn and Yahyapour [3] then no jobs has a higher
priority than any other:

AWRT =

∑
j∈τ

pj ·mj · (Cj(S)− rj)
∑
j∈τ

pj ·mj
(6)

Intuitively, a short AWRT states that on average the users do
not wait long for their jobs to complete in relation to the
resource consumption of the jobs. There is a strong correlation
between AWRT und UTIL.
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However, AWRT can also be defined for each user group
separately. This results in the group specific objectives AWRTi

with i ∈ {1, 2, . . . 5}:

AWRTi =

∑
j∈τ

pj ·mj · (Cj(S)− rj) · %i(j)
∑
j∈τ

pj ·mj · %i(j)
(7)

As there is no real life scheduling objective available from
the workload traces we must again define such an objective
function fobj . To this end, we use those basic objective
functions introduced above. With the help of an appropriate
selection, we can easily improve our scheduling results in
comparison with a standard online scheduling algorithm. For
instance, the backfilling of EASY favours sequential jobs
which are particularly common in user groups with high
resource consumption. Thus giving priority to user groups
with small resource demands will result in a bad performance
of EASY and give our new algorithm the chance to excel.
However, it is not likely that a system owner will particularly
favour those user groups that contribute the least to a high
utilization of his machines. Therefore, we select an objective
function that gives higher priority to those user groups with a
higher resource consumption. This is the implicit objective of
EASY and allows a fair comparison. Moreover in this study,
we restrict ourselves to two basic objective functions as this
allows a better graphical representation of the results within an
approximated Pareto front, see Section V-C. Those thoughts
lead to the objective function

fobj = 10 · AWRT1 + 4 · AWRT2. (8)

The choice of another objective function may lead to different
results but does not affect the feasibility of our methodology.

C. Training of Parameters

During training, the objective function fobj determines the
scheduling quality. Our procedure uses all combinations of
the four sorting criteria with the three scheduling situations.
Hence, we optimize twelve different systems and finally for
each situation, we select the system that performs best.

For the determination of the required 36 object parameters,
we use a (µ+λ)-Evolution Strategy with a real-value coding as
explained in Section II-B. An individual is characterized by the
set of object parameters and a set of strategy parameters. The
fitness of this individual is the value of the complex scheduling
objective fobj obtained from the schedule that is generated
from the training workload with the object parameter set of the
individual. Each single optimization involves 100 generations.
We set µ = 15 and λ = 105 matching Schwefel’s recom-
mendation of µ/λ = 1/7 [11]. In order to reduce the search
space, the values of the 36 object parameters are limited to
wi ∈ [0, 1], a ∈ [0, 1], b ∈ [0, 1], and Ki ∈ [0, 5]. As suggested
by Beyer and Schwefel [10] we further apply a self-adaptation
of the mutation step size. This self-adaptation is controlled
by strategy parameters of the mutation distribution, which
are internally evolved with an Evolution Strategy rather than
being predetermined by some exogenous scheme. As there

is a separate mutation strength for each object parameter we
also need a set of 36 strategy parameters. Furthermore, within
our Evolution Strategy we use discrete recombination with
all µ parents for the object parameters whereas intermediate
recombination with 2 randomly selected parents is applied to
the strategy parameters, see also Beyer and Schwefel [10].

The afore mentioned schedule evaluation with a discrete
event simulation is extremely time consuming (about 4 hours
on a high end PC) as most workload traces consist of more
than 100,000 jobs which have been submitted over a time
period of approximately one year, see Table I. Therefore, fast
convergence of the Evolution Strategy is of great importance.
Hence, we parallelized our evaluations and computed them
on a 120 processor cluster. This is possible because all
simulations are completely independent from each other. Then
the optimization of the parameter set for a single workload
takes approximately two weeks. Nevertheless, more than three
months of calculation were required to obtain all the results
presented in this paper.

Note that the given effort estimates are only related to the
parameter training of our Greedy algorithm. This training is
only required if the composition of the workload changes. As
already mentioned the execution of our scheduling algorithm
in the runtime environment does not use Evolution Strategies
and is faster than the execution of EASY. Therefore, our
scheduling strategy can compete well with approaches used
in existing MPP systems.

D. Generation of Algorithms

In this study, we use two different approaches to auto-
matically generate a Greedy strategy for a given scheduling
objective.

• Single Workload Training: We select the CTC workload
trace and train the parameters only for this workload.
Note that any of the available workloads can be chosen
but the required computational effort does not allow
a parallel generation of algorithms for all workloads.
However, small scale experiments for other workloads
give indications of very similar results. Then we apply
the Greedy algorithm with the trained parameters on the
same workload. The result determines the improvement
potential of this approach. Note that our process is subject
to several restrictions:

1) We use a Greedy approach without backfilling to
keep the processing time of the algorithm low.

2) No feedback from the previously scheduled jobs and
the current schedule is considered to support multi
layer Grid scheduling.

3) The choice of the basic sorting criteria is not opti-
mized.

Therefore, it is not likely that the scheduling result of our
algorithm will be very close to the optimal offline result.
But we expect an improvement in comparison to EASY.
Then we apply the Greedy algorithm with this parameter
set also to the other workload traces and individually
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compare the resulting online schedules to the schedules
produced by the application of EASY using our schedul-
ing objective. As the parameter set is only trained on
the CTC workload we expect only an improvement of
the results for those workloads who have a similar job
composition as the CTC workload.

• Multiple Workload Training: We generate a parameter
set that minimizes the sum of the objective values of all
workload traces. Again for each workload, we compare
the resulting online schedule to the corresponding EASY
schedule. With this approach, we want to determine
how well a single static parameter set can work for all
workloads despite their differences in job composition.

V. EVALUATION

In addition to the direct comparison of two online sched-
ules, we also determine the quality of the produced online
schedules in relation to the schedules of an approximate Pareto
front of feasible schedules that was generated offline from
the workload traces [17]. This Pareto front approximation is
executed for each workload trace separately and is based on
the seven basic objective functions: UTIL, AWRT, and AWRT1

to AWRT5. Similar approaches were presented by Balicki and
Kitowski [18] but for less dimensions. Although the generation
of an approximate Pareto front is not subject of this paper, two
restrictions must be noted:

1) For real workloads, we are only able to approximate
Pareto fronts. Therefore, schedules of this front are not
guaranteed to be real Pareto optima.

2) The schedules are generated offline. Online methods
may not be able to achieve as good results due to online
constraints.

A. Single Workload Training

First, we address the results when the parameters are trained
by using only the CTC workload trace. Table III shows the
schedule results of our Greedy algorithm and EASY for the
objective functions UTIL and AWRT1 to AWRT5. Note that
the utilization is not affected by giving a higher priority to
user groups 1 and 2 although our objective function does
not include UTIL. The relations between the AWRTi values
of both schedules are also given in Figure 1. Obviously,
our Greedy algorithm achieves the desired prioritization as
AWRT1 and AWRT2 improve with respect to EASY. The value
of objective function decreases by more than 9 %, see Figure 2.
However, the values of AWRT3 to AWRT5 of the Greedy
schedule are much larger compared to the EASY schedule as
those user groups are not considered in the objective function.
Clearly, the low-priority users must pay the prize as overall
utilization remains unchanged.

The generated Greedy strategy uses the sorting crite-
rion f2(t, j). This sorting criterion performes best in all of our
different optimization approaches with the Greedy algorithm.
Therefore, f2(t, j) can serve as a starting point for a study on
appropriate sorting criteria.

Method AWRT1 AWRT2 AWRT3 AWRT4 AWRT5 UTIL
GREEDY 52755.80 61947.65 56275.18 54017.23 35085.84 66.99
EASY 59681.28 64976.07 50317.47 46120.02 31855.68 66.99

TABLE III

ABSOLUTE RESULTS OF AWRT (IN SECONDS) AND UTIL (IN %) FOR THE

CTC WORKLOAD TRACE AND SINGLE WORKLOAD TRAINING
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Fig. 1. AWRT improvements of the Greedy algorithm versus EASY for the
CTC workload and single workload training

The Greedy algorithm with the CTC trained parameter set
is then applied to the other workload traces. Figure 2 shows
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Fig. 2. Objective improvements of the CTC trained Greedy algorithm applied
to other workloads

that the algorithm performs well for the CTC, LANL, and
SDSC95 workload traces but significantly fails for the KTH
and SDSC00 workloads. For the SDSC96 workload trace it
produces slightly worse results than EASY. This indicates
that the job composition of the workloads CTC, LANL,
and SDSC95 is rather similar, while there are significant
differences to the composition of the other workloads. Note
that this is an evaluation of the workload directly based on
scheduling algorithms while other workload characterizations
use statistical methods [14] and hope that similar statistic
properties will result in a similar behavior during scheduling.

B. Multiple Workload Training

Compared to Figure 2, Figure 3 shows that training on
multiple workloads results in a significant but smaller improve-
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Fig. 3. Objective improvements of the multiple workload trained Greedy
algorithm applied to all workloads

ment for the CTC workload trace while the performance is
better for all other workload traces. The influence of the other
workloads is particularly obvious for the SDSC00 workload
trace: When the parameter set is trained only with the CTC
workload trace the EASY schedule is clearly better than the
Greedy schedule. However, when all workload traces are used
during training the SDSC00 Greedy schedule shows the largest
improvement over the corresponding EASY schedule. But
the results also show that there is no single parameter set
that produces good scheduling results for a given objective
and all workloads. This suggests the use of more sophisti-
cated hyperheuristic approaches, see for example Burke et
al. [19], [20], if the workload composition is changing. Those
approaches may select between parameter sets trained on
different workloads. Further, they need an additional feedback
mechanism to identify changes in the workload composition.

C. Results Compared to Pareto Front Approximation

In a graphical representation of the Pareto front approxi-
mation, each point corresponds to a feasible schedule that is
not dominated by any other generated feasible schedule of the
used workload trace. Note that those points cover an area in
our two-dimensional chart as our chart only shows a projection
of the actual seven-dimensional Pareto front approximation.
As the Pareto front was generated offline and our online
schedule is subject to various restrictions, see Section IV-
D, it is unlikely that schedules of this front can actually be
produced by our online scheduling systems. Therefore, we
refer to this front as an lower bound of the best achievable
solution. Although we do not know the real Pareto front, the
high density of our approximation indicates a high quality of
the approximation, see Figures 4 and 5. Those figures show a
chart using the AWRT objectives that are part of the scheduling
objective. Therefore, the distance to the appropriate border
position in the lower/left corner of the area covered by the
Pareto front approximation represents an upper bound of the
possible improvement. This must be seen in relation to the
distance between the positions of the Greedy schedule and
the EASY schedule in the chart. As EASY does not explicitly
favour any user group, the corresponding AWRT values are
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Fig. 4. Positions of the schedules produced by EASY, CTC trained Greedy,
and multiple workloads trained Greedy algorithms in the (AWRT1,AWRT2)-
chart in comparison to the 7-dimensional Pareto front approximation of the
CTC workload

likely to be located farther away from the mentioned border
position. In each figure, we highlight the schedules obtained
by the single workload (CTC) trained Greedy algorithm, the
multiple workload trained Greedy algorithm, and EASY.

Figure 4 represents the CTC workload and visually shows
that both Greedy algorithms produce significant improve-
ments, see also Figures 1 and 2. Due to the scheduling
objective, the improvement is larger for AWRT1 than for
AWRT2. While there may still be some room for further
improvement, the area to the left of the CTC trained Greedy
schedule exhibits significantly less density. Therefore, it is not
really clear whether those schedules can actually be reached
with an online Greedy algorithm. Figure 5 based on the

Fig. 5. Positions of the schedules produced by EASY, CTC trained Greedy,
and multiple workloads trained Greedy algorithms in the (AWRT1,AWRT2)-
chart in comparison to the 7-dimensional Pareto front approximation of the
SDSC 95 workload

SDSC95 workload trace shows that both Greedy algorithms
produce similar results that are not clearly better than the
EASY schedule, see also Figures 1 and 2. However, the area
between the Greedy schedule and the lower/left border line
of the Pareto front projection is not as dense as in the CTC
case. This may indicate that improvements over EASY are
only possible if the parameter set is specifically trained with
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this workload.

VI. CONCLUSION

We have proposed a methodology to generate online Greedy
scheduling algorithms for MPP systems that are computational
inexpensive and support owner defined scheduling objectives.
The objective may express preferences of user groups that typ-
ically exist at real MPP installations. To our knowledge, those
scheduling algorithms do not yet exist. The Greedy algorithm
needs a parameter set that determines sorting criteria for the
waiting queue of the scheduling process. Those parameter sets
are evolutionary optimized in an offline process using recorded
workload traces.

We have applied our approach to real workload traces that
were scaled to quantitatively compare the obtained schedules.
We were able to obtain significant improvements when the
trained parameter set was used on the same workload. How-
ever, it became also apparent that the composition of the
workload has a significant influence on the performance of
the algorithm. The algorithm produced excellent results on
some additional workloads while it clearly failed on others.
This may provide us with a different approach of workload
characterization in the future.

It was the goal of this study to show that highly flexi-
ble scheduling processes are possible that require the same
processing power as standard algorithms and produce better
results. However, we also like to state that better schedules
can be produced if more processing power is available and
some of the online constraints are relaxed, see, for instance,
Franke et al. [21].
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