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Abstract. The design and evaluation of job scheduling strategies of-
ten require simulations with workload data or models. Usually workload
traces are the most realistic data source as they include all explicit and
implicit job patterns which are not always considered in a model. In
this paper, a method is presented to enlarge and/or duplicate jobs in
a given workload. This allows the scaling of workloads for later use on
parallel machine configurations with a different number of processors.
As quality criteria the scheduling results by common algorithms have
been examined. The results show high sensitivity of schedule attributes
to modifications of the workload. To this end, different strategies of scal-
ing number of job copies and/or job size have been examined. The best
results had been achieved by adjusting the scaling factors to be higher
than the precise relation between the new scaled machine size and the
original source configuration.

1 Introduction

The scheduling system is an important component of a parallel computer. Here,
the applied scheduling strategy has direct impact to the overall performance of
the computer system with respect to the scheduling policy and objective. The
design of such a scheduling system is a complex task which requires several
steps, see [13]. The evaluation of scheduling algorithms is important to identify
the appropriate algorithm and the corresponding parameter settings. The results
of theoretical worst-case analysis are only of limited help as typical workloads
on production machines do normally not exhibit the specific structure that will
create a really bad case. In addition, theoretical analysis is often very difficult
to apply to many scheduling strategies. Further, there is no random distribu-
tion of job parameter values, see e.g. Feitelson and Nitzberg [9]. Instead, the job
parameters depend on several patterns, relations, and dependencies. Hence, a
theoretical analysis of random workloads will not provide the desired informa-
tion either. A trial and error approach on a commercial machine is tedious and
significantly affects the system performance. Thus, it is usually not practicable
to use a production machine for the evaluation except for the final testing. This
just leaves simulation for all other cases.

Simulations may either be based on real trace data or on a workload model.
Workload models, see e.g. Jann et al. [12] or Feitelson and Nitzberg [9], enable a



wide range of simulations by allowing job modifications, like a varying amount
of assigned processor resources. However, many unknown dependencies and pat-
terns may cause the actual workload of a real system. This is especially true as
the characteristics of an workload usually change over time; beginning from daily
or weekly cycles to changes in the job submissions during a year and the lifetime
of a parallel machine. Here, the consistence of a statistical generated workload
model with real workloads is difficult to guarantee. On the other hand, trace data
restrict the freedom of selecting different configurations and scheduling strategies
as a specific job submission depends on the original circumstances. The trace is
only valid on a similar machine configuration and the same scheduling strategy.
For instance, trace data taken from a 128 processor parallel machine will lead
to unrealistic results on a 256 processor machine. Therefore, the selection of the
underlying data for the simulation depends on the circumstances determined by
the MPP architecture as well as the scheduling strategy. A variety of examples
already exists for evaluations via simulation based on a workload model, see e.g.
Feitelson [5], Feitelson and Jette [8] or on trace data, see e.g. Ernemann et al.
[4].

Our research on job scheduling strategies for parallel computers as well as for
computational Grid environments led to the requirement of considering different
resource configurations. As the individual scheduling objectives of users and
owners is of high importance in this research, we have to ensure that the workload
is very consistent with real demand. To this end, statistical distribution of the
various parameters without the detailed dependencies between them cannot be
applied. Therefore, real workload traces have been chosen as the source for our
evaluations. In this paper, we address the question how workload traces can
be transformed to be used on different resource configurations while retaining
important specifics. In Section 2 we give a brief overview on previous works in
workload modelling and analysis. In addition, we discuss our considerations for
choosing a workload for evaluation. Our approach and the corresponding results
are presented in Section 3. Finally, we conclude this paper with a brief discussion
on the important key observations in Section 4.

2 Background

We consider on-line parallel job scheduling in which a stream of jobs is submitted
to a job scheduler by individual users. The jobs are executed in a space-sharing
fashion for which a job scheduling system is responsible to decide when and
on which resource set the jobs are actually started. A job is first known by
the system at its submission time. The job description contains information on
its requirements as e.g. number of processing nodes, memory or the estimated
execution length.

For the evaluation of scheduling methods it is a typical task to choose one or
several workloads for simulations. The designer of a scheduling algorithm must
ensure that the workload is close to a real user demand in the examined scenario.
Workload traces are recorded on real systems and contain information on the



job requests including the actual start and execution time of the job. Extensive
research has been done to analyze workloads as well as to propose corresponding
workload models, see e.g. [7, 3, 2, 1].

Generally, statistical models use distributions or a collection of distributions
to describe the important features of real workload attributes and the correla-
tions among them. Then synthetic workloads are generated by sampling from the
probability distributions [12, 7]. Statistical workload models have the advantage
that new sets of job submissions can be generated easily. The consistence with
real traces depends on the knowledge about the different examined parameters in
the original workload. Many factors contribute to the actual process of workload
generation on a real machine. Some of them are known, some are hidden and
hard to deduce. It is difficult to find rules for job submissions by individual users.
The analysis of workloads shows several correlations and patterns of the work-
load statistics. For example, jobs on many parallel computers require job sizes
of a power of two [15, 5, 16]. Other examples are the job distribution during the
daily cycle obviously caused by the individual working hours of the users, or the
job distribution of different week days. Most approaches consider the different
statistical moments isolated. Some correlations are included in several methods.
However, it is very difficult to identify whether the important rules and patterns
are extracted. In the same way it is difficult to tell whether the inclusion of the
result is actually relevant to the the evaluation and therefore also relevant for
the design of an algorithm.

In general, only a limited number of users are active on a parallel computer,
for instance, several dozens. Therefore, for some purposes it is not clear if a given
statistical model comes reasonable close to a real system. For example, some
workload traces include singular outliers which significantly influence the overall
scheduling result. In this case, a statistical modelling without this outlier might
significantly deviate from the real world result. In the same way, it may make a
vast difference to have several outliers of the same or similar kind. The relevance
to the corresponding evaluation is difficult to judge, but this also renders the
validity of the results undefined.

Due to the above mentioned reasons, it emerged to be difficult to use sta-
tistical workload models for our research work. Therefore, we decided to use
workload traces for our evaluations. The standard parallel workload archive [19]
is a good source for job traces. However, the number of available traces is lim-
ited. Most of the workloads are observed on different supercomputers. Mainly,
the total number of available processors differs in those workloads. Therefore,
our aim was to find a reasonable method to scale workload traces to fit on a
standard supercomputer. However, special care must be taken to keep the new
workload as consistent as possible to the original trace. To this end, criteria for
measuring the validity had to be chosen for the examined methods for scaling
the workload.

The following well-known workloads have been used: of the CTC [11], the
NASA [9], the LANL [6], the KTH [17] and three workloads from the SCSD [20].
All traces are available from the Parallel Workload Archive, see [19]. As shown in



Table 1, the supercomputer from the LANL has the highest number of processors
from the given computers and so this number of processors was chosen as the
standard configuration. Therefore the given workload from the LANL does not
need to be modified and as a result the following modification will only be applied
to the other given workloads.

Workload CTC NASA KTH LANL SDSC95 SDSC96 SDSC00

Number of jobs 79302 42264 28490 201387 76872 38719 67667

Number of nodes 430 128 100 1024 416 416 128

Size of the biggest
job

336 128 100 1024 400 320 128

Static factor f 3 8 10 1 3 3 8
Table 1. The Examined Original Workload Traces.

In comparison to statistical workload models, the use of actual workload
traces is simpler as they inherently include all submission patterns and under-
lying mechanisms. The traces reflect the real workload exactly. However, it is
difficult to perform several simulations as the data basis is usually limited. In ad-
dition, the applicability of workload traces to other resource configuration with
a different number of processors is complicated. For instance, this could result
in a too high workload and an unrealistic long wait time for a job. Or, contrary,
the machine is not fully utilized if the amount of computational work is too low.
However, it is difficult to change any parameter of the original workload trace as
it has an influence on its overall validity. For example, the reduction of the inter-
arrival time destroys the distribution of the daily cycle. Therefore, modifications
on the job length are inappropriate. Modifications of the requested processor
number of a job change the original job size distribution. For instance, we might
invalid an existing preference of jobs with a power of 2 processor requirement. In
the same way, an alternative scaling of the number of requested processors by a
job would lead to an unrealistic job size submission pattern. For example, scaling
a trace taken from a 128 node MPP system to 256 node system by just dupli-
cating each job preserves the temporal distribution of job submissions. However,
this transformation leads also to an unrealistic distribution as no larger jobs are
submitted.

Note, that the scaling of a workload to match a different machine configura-
tion always alters the original distribution whatsoever. Therefore, as a trade-off
special care must be taken to preserve original time correlations and job size
distribution.

3 Scaling Workloads to a Different Machine Size

The following 3 sections present the examined methods to scale the workload.
We briefly discuss the different methods as the results of each step motivated
the next.



First, it is necessary to select quality criteria for comparing the workload
modifications. Distribution functions could be used to compare the similarity of
the modified with the corresponding original workloads. This method might be
valid, however, it is unknown whether the new workload has a similar effect on
the resulting schedule as the original workload.

As mentioned above, the scheduling algorithm that has been used on the
original parallel machine also influences the submission behavior of the users.
If a different scheduling system is applied and causes different response times,
this will most certainly influence the submission pattern of later arriving jobs.
This is a general problem [3, 1] that has to be kept in mind if workload traces
or statistical models are used to evaluate new scheduling systems. This problem
can be solved if the feedback mechanisms of prior scheduling results on new job
submissions is known. However, such a feedback modelling is a difficult topic
as the underlying mechanisms vary between individual users and between single
jobs.

For our evaluation, we have chosen the Average Weighted Response Time
(AWRT) and the Average Weighted Wait Time (AWWT) generated by the
scheduling process. Several other scheduling criteria, for instance the slowdown,
can be derived from AWRT and AWWT. To match the original scheduling sys-
tems, we used First-Come-First-Serve [18] and EASY-Backfilling [17, 14] for gen-
erating the AWRT and AWWT. These scheduling methods are well known and
used for most of the original workloads. Note, that the focus of this paper is not
to compare the quality of both scheduling strategies. Instead, we use the results
of each algorithm to compare the similarity of each modified workload with the
corresponding original workload.

The definitions (1) to (3) apply whereas index j represents job j.

Resource Consumptionj =
(

requestedResourcesj · (endTimej − startTimej)
)

(1)

AWRT =

∑

j∈Jobs

(

Resource Consumptionj · (endTimej − submitTimej)
)

∑

j∈Jobs
Resource Consumptionj

(2)

AWWT =

∑

j∈Jobs

(

Resource Consumptionj · (startTimej − submitTimej)
)

∑

j∈Jobs
Resource Consumptionj

(3)

In addition, the makespan is considered, which is the end time of the last
job within the workload. The Squashed Area is given as a measurement for the
amount of consumed processing power for the workloads which is defined in (4).



Squashed Area =
∑

j∈Jobs

Resource Consumptionj (4)

Note, that in the following we refer to jobs with a higher number of requested
processor as bigger jobs, while calling jobs with a smaller demand in processor
number as smaller jobs respectively.

Scaling only the number of requested processors of a job results in the prob-
lem that the whole workload distribution is transformed by a factor. In this case
the modified workload might not contain jobs requesting 1 or a small number of
processors. In addition, the favor of jobs requesting a power of 2 processors is not
modelled correctly for most scaling factors. Alternatively, the number of jobs can
be scaled. Each original job is duplicated to several jobs in the new workload.
Using only this approach has the disadvantage that the new workload has more
smaller jobs in relation to the original workload. For instance, if the biggest job
in the original workload uses the whole machine, a duplication of each job for a
machine with twice the number of processors leads to a new workload in which
no job requests the maximum number of processors at all.

3.1 Precise Scaling of Job Size

Based on the considerations above, a factor f is calculated for combining the
scaling of the requested processor number of each job with the scaling of the
total number of jobs. In Table 1 the requested maximum number of processors
requested by a job is given as well as the total number number of available
processors.

As explained above multiplying solely the number of processors of a job or
the number of jobs by a constant factor is not reasonable. Therefore, the fol-
lowing combination of both strategies has been applied. In order to analyze the
influence of both possibilities the workloads were modified by using a proba-
bilistic approach: a probability factor p is used to specify whether the requested
number of processors is multiplied for a job or copies of this job are created.
During the scaling process each job of the original workload is modified by only
one of the given alternatives. A random value between 0 and 100 is generated
for probability p. A decision value d is used to discriminate which alternative is
applied for a job. If p produced by the probabilistic generator is greater d the
number of processors is scaled for the job. Otherwise, f identical, new job are
included in the new workload. So, if d has a greater value, the system prefers
the creation of smaller jobs while resulting in less bigger jobs otherwise.

As a first approach, integer scaling factors had been chosen based on the
relation to a 1024 processor machine. We restricted ourselves to integer factors
as it would require additional considerations to model fractional job parts. For
the KTH a factor f of 10 is chosen, for the NASA and the SDSC00 workloads a
factor of 8 and for all other workloads a factor of 3. Note, that for the SDSC95



workload one job yields more than 1024 processors if multiplied by 3. Therefore,
this single job is reduced to 1024.

For the examination of the influence of d, we created 100 modified workloads
for each original workload with d between 0 and 100. However, with exception to
the NASA traces, our method did not produce satisfying results for the workload
scaling. The imprecise factors increased the overall amount of workload at most
26% which lead to a jump of several factors for AWRT and AWWT. This shows
how important the precise scaling of the overall amount of workload is. Second,
if the chosen factor f is smaller than the precise scaling factor the workloads
which prefer smaller jobs scale better than the workloads with bigger jobs. If
f is smaller or equal to the precise scaling factor, the modified workloads scale
better for smaller values of d.

Based on these results, we introduced a precise scaling for the job size. As
the scaling factors for the workloads CTC, KTH, SDSC95 and SDSC96 are not
integer values an extension to the previous method was necessary. In the case
that a single large job is being created the number of jobs is multiplied by the
precise scaling factor and rounded.

The scheduling results for the modified workloads are presented in Table 2.
Only the results for the original workload (ref) and the modified workloads with
the parameter settings of d = {1, 50, 99} are shown. Now the modified CTC
based workloads are close to the original workloads in terms of AWWT, AWRT
and utilization if only bigger jobs are created (d = 1). For increasing values for
d, also AWRT, AWWT and utilization increase. Overall, the results are closer to
the original results in comparison to using an integer factor. A similar behavior
can be found for the SDSC95 and SDSC96 workload modifications. For KTH the
results are similar with the exception that we converge to the original workload
for decreasing d.

The results for the modified NASA workloads present very similar results for
the AWRT and AWWT for the derived and original workloads independently
from the used scheduling algorithm. Note, that the NASA workload itself is quite
different in comparison to the other workloads as it includes a high percentage
of interactive jobs.

In general, the results for this method are still not satisfying. Using a factor
of d = 1 is not realistic as mentioned in Section 2 because small jobs are missing
in relation to the original workload.

3.2 Precise Scaling of Number and Size of Jobs

Consequently, the precise factor is also used for the duplication of jobs. However,
as mentioned above, it is not trivial to create fractions of jobs. To this end, a
second random variable p1 was introduced with values between 0 and 100. The
variable p1 is used to decide whether the lower or upper integer bound of the
precise scaling factor is considered. For instance, the precise scaling factor for
the CTC workload is 2.3814 we used the value of p1 to decide whether to use the
scaling factor of 2 or 3. If p1 is smaller than 38.14 the factor of 2 will be used,
3 otherwise. The average should result in a scaling factor of around 2.3814. For



the other workloads we used the same scaling strategy with the decision values
of 24.00 for the KTH workload and with 46.15 for the SDSC95 and SDSC96
workloads.

This enhanced method improves the results significantly. In Table 3 the main
results are summarized. Except for the simulations with the SDSC00 workload
all other results show a clear improvement in terms of similar utilization for each
of the according workloads. The results for the CTC show again that only small
values of d lead to convergence of AWRT and AWWT to the original workload.
The same qualitative behavior can be observed for the workloads which are
derived from the KTH and SDSC00 workloads.

The results for the NASA workload show that AWRT and AWWT do not
change between the presented methods. This leads to the assumption that this
specific NASA workload does not contain enough workload to produce job delays.
The results of the modifications for the SDSC9* derived workloads are already
acceptable as the AWRT and AWWT between the original workloads and the
modified workloads with a mixture of smaller and bigger jobs (d = 50) are
already very close. For this two workloads the scaling is acceptable.

In general, it can be summarized that the modification still do not produce
matching results for all original workloads. Although we use precise factors for
scaling job number and job width, some of the scaled workloads yield better
results than the original workload. This is probably caused due to the fact that
according to the factor d the scaled workload is distributed over either more but
smaller (d = 99) or less but bigger jobs (d = 1). As mentioned before, the exis-
tence of more smaller jobs in a workload usually improves the scheduling result.
The results show that a larger machine leads to smaller AWRT and AWWT val-
ues. Or contrary, a larger machine can execute relatively more workload than an
according number of smaller machine for the same AWRT or AWWT. However,
this applies only for the described workload modifications. Here, we generate
relatively more smaller jobs in relation to the original workload.
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430 ref 79285 29306750 66 13905 53442 8335013015
1 82509 29306750 66 13851 53377 19798151305

1024 50 158681 29306750 75 21567 61117 22259040765
99

E
A

S
Y

236269 29306750 83 30555 70083 24960709755

C
T

C

430 ref 79285 29306750 66 19460 58996 8335013015
1 82509 29306750 66 19579 59105 19798151305

1024 50 158681 29306750 75 28116 67666 22259040765
99

F
C

F
S

236269 29306750 83 35724 75253 24960709755
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100 ref 28482 29363625 69 24677 75805 2024854282
1 30984 29363625 69 25002 76102 20698771517

1024 50 157614 29363625 68 17786 68877 20485558974
99

E
A

S
Y

282228 29363625 67 10820 61948 20258322777
K

T
H

100 ref 28482 29381343 69 400649 451777 2024854282
1 30984 29373429 69 386539 437640 20698771517

1024 50 157614 29376374 68 38411 89503 20485558974
99

F
C

F
S

282228 29363625 67 11645 62773 20258322777

128 ref 42049 7945421 47 6 9482 474928903
1 44926 7945421 47 6 9482 3799431224

1024 50 190022 7945421 47 5 9481 3799431224
99

E
A

S
Y

333571 7945421 47 1 9477 3799431224

N
A

S
A

128 ref 42049 7945421 47 6 9482 474928903
1 44926 7945421 47 6 9482 3799431224

1024 50 190022 7945421 47 5 9481 3799431224
99

F
C

F
S

333571 7945421 47 1 9477 3799431224

128 ref 67655 63192267 83 76059 116516 6749918264
1 72492 63201878 83 74241 114698 53999346112

1024 50 305879 63189633 83 54728 95185 53999346112
99

E
A

S
Y

536403 63189633 83 35683 76140 53999346112

S
D

S
C

0
0

128 ref 67655 68623991 77 2182091 2222548 6749918264
1 72492 68569657 77 2165698 2206155 53999346112

1024 50 305879 64177724 82 516788 557245 53999346112
99

F
C

F
S

536403 63189633 83 38787 79244 53999346112

416 ref 75730 31662080 63 13723 46907 8284847126
1 77266 31662080 63 14505 47685 20439580820

1024 50 151384 31662080 70 19454 52652 22595059348
99

E
A

S
Y

225684 31662080 77 25183 58367 24805524723

S
D

S
C

9
5

416 ref 75730 31662080 63 17474 50658 8284847126
1 77266 31662080 63 18735 51914 20439580820

1024 50 151384 31662080 70 24159 57357 22595059348
99

F
C

F
S

225684 31662080 77 28474 61659 24805524723

416 ref 37910 31842431 62 9134 48732 8163457982
1 38678 31842431 62 9503 49070 20140010107

1024 50 75562 31842431 68 14858 54305 22307362421
99

E
A

S
Y

112200 31842431 75 22966 62540 24410540372

S
D

S
C

9
6

416 ref 37910 31842431 62 10594 50192 8163457982
1 38678 31842431 62 11175 50741 20140010107

1024 50 75562 31842431 68 18448 57896 22307362421
99

F
C

F
S

112200 31842431 75 26058 65632 24410540372

Table 2: Results for Precise Scaling for the Job Size and Estimated Scal-
ing for Job Number.
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430 ref 79285 29306750 66 13905 53442 8335013015
1 80407 29306750 66 13695 53250 19679217185

1024 50 133981 29306750 66 12422 51890 19734862061
99

E
A

S
Y

187605 29306750 66 10527 50033 19930294802
C

T
C

430 ref 79285 29306750 66 19460 58996 8335013015
1 80407 29306750 66 18706 58261 19679217185

1024 50 133981 29306750 66 15256 54724 19734862061
99

F
C

F
S

187605 29306750 66 12014 51519 19930294802

100 ref 28482 29363625 69 24677 75805 2024854282
1 31160 29363625 69 24457 75562 20702184590

1024 50 159096 29363625 69 18868 70002 20725223128
99

E
A

S
Y

289030 29363625 69 11903 62981 20737513457

K
T

H

100 ref 28482 29381343 69 400649 451777 2024854282
1 31160 29381343 69 383217 434322 20702184590

1024 50 159096 29371792 69 41962 93097 20725223128
99

F
C

F
S

289030 29363625 69 12935 64013 20737513457

128 ref 42049 7945421 47 6 9482 474928903
1 44870 7945421 47 6 9482 3799431224

1024 50 188706 7945421 47 2 9478 3799431224
99

E
A

S
Y

333774 7945421 47 1 9477 3799431224

N
A

S
A

128 ref 42049 7945421 47 6 9482 474928903
1 44870 7945421 47 6 9482 3799431224

1024 50 188706 7945421 47 3 9479 3799431224
99

F
C

F
S

333774 7945421 47 1 9477 3799431224

128 ref 67655 63192267 83 76059 116516 6749918264
1 77462 63192267 83 75056 115513 53999346112

1024 50 305802 63189633 83 61472 101929 53999346112
99

E
A

S
Y

536564 63189633 83 35881 76338 53999346112

S
D

S
C

0
0

128 ref 67655 68623991 77 2182091 2222548 6749918264
1 77462 68486537 77 2141633 2182090 53999346112

1024 50 305802 64341025 82 585902 626359 53999346112
99

F
C

F
S

536564 63189633 83 38729 79186 53999346112

416 ref 75730 31662080 63 13723 46907 8284847126
1 76850 31662080 63 14453 47641 20411681280

1024 50 131013 31662080 63 13215 46319 20466656625
99

E
A

S
Y

185126 31662080 62 11635 44739 20446439351

S
D

S
C

9
5

416 ref 75730 31662080 63 17474 50658 8284847126
1 76850 31662080 63 18511 51698 20411681280

1024 50 131013 31662080 63 15580 48684 20466656625
99

F
C

F
S

185126 31662080 62 12764 45867 20446439351
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416 ref 37910 31842431 62 9134 48732 8163457982
1 38459 31842431 62 9504 49084 20100153862

1024 50 66059 31842431 62 9214 49087 20106192767
99

E
A

S
Y

92750 31842431 62 8040 47796 20171317735
S
D

S
C

9
6

416 ref 37910 31842431 62 10594 50192 8163457982
1 38459 31842431 62 11079 50658 20100153862

1024 50 65627 31842431 62 10126 49823 20106192767
99

F
C

F
S

92750 31842431 62 8604 48360 20171317735

Table 3: Results using Precise Factors for Job Number and Size.
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430 ref 79285 29306750 66 13905 53442 8335013015
1024 2.45

EASY
136922 29306750 68 14480 54036 20322861231

430 ref 79285 29306750 66 19460 58996 8335013015

C
T

C

1024 2.45
FCFS

136922 29306750 68 19503 59058 20322861231

100 ref 28482 29363625 69 24677 75805 2024854282
1024 10.71

EASY
165396 29363625 72 24672 75826 21708443586

100 ref 28482 29381343 69 400649 451777 2024854282

K
T

H

1024 10.71
FCFS

165396 29379434 72 167185 218339 21708443586

128 ref 42049 7945421 47 6 9482 474928903
1024 8.00

EASY
188706 7945421 47 2 9478 3799431224

128 ref 42049 7945421 47 6 9482 474928903

N
A

S
A

1024 8.00
FCFS

188258 7945421 47 4 9480 3799431224

128 ref 67655 63192267 83 76059 116516 6749918264
1024 8.21

EASY
312219 63204664 86 75787 116408 55369411171

128 ref 67655 68623991 77 2182091 2222548 6749918264

S
D

S
C

0
0

1024 8.58
FCFS

323903 69074629 82 2180614 2221139 58020939264

416 ref 75730 31662080 63 13723 46907 8284847126
1024 2.48

EASY
131884 31662080 63 13840 46985 20534988559

416 ref 75730 31662080 63 17474 50658 8284847126

S
D

S
C

9
5

1024 2.48
FCFS

131884 31662080 63 17327 50472 20534988559

416 ref 37910 31842431 62 9134 48732 8163457982
1024 2.48

EASY
66007 31842431 62 8799 48357 20184805564

416 ref 37910 31842431 62 10594 50192 8163457982

S
D

S
C

9
6

1024 2.48
FCFS

66007 31842431 62 10008 49566 20184805564

Table 4: Results for Increased Scaling Factors with d = 50.



3.3 Adjusting the Scaling Factor

In order to compensate the above mentioned scheduling advantage of having
more small jobs in relation to the original workload, the scaling factor f was
modified to increase the overall amount of workload. The aim is to find a scaling
factor f that the results in terms of the AWRT and AWWT match to the original
workload for d = 50. In this way, a combination of bigger as well as more smaller
jobs exists. To this end, additional simulations have been performed with small
increments of f .

In Table 4 the corresponding results are summarized, more extended results
are shown in Table 5 in the appendix. It can be observed that the scheduling
behavior is not strict linear corresponding to the incremented scaling factor f .
The precise scaling factor for the CTC workload is 2.3814, whereas a slightly
higher scaling factor corresponds to a AWRT and AWWT close to the original
workload results. The actual values slightly differ e.g. for the EASY (f = 2.43)
and the FCFS strategy (f = 2.45). Note, that the makespan stays constant for
different scaling factors. Obviously the makespan is dominated by a later job
and is therefore independent of the increasing amount of computational tasks
(squashed area, utilization and the number of jobs). This underlines that the
makespan is predominantly an off-line scheduling criterion [10]. In an on-line
scenario new jobs are submitted to the system where the last submitted jobs
influence the makespan without regard to the overall scheduling performance
of the whole workload. An analogous procedure can be applied to the KTH,
SDSC95 and SDSC96 workloads. The achieved results are very similar.

The increment of the scaling factor f for the NASA workloads leads to dif-
ferent effects. A marginal increase causes a significant change of the scheduling
behavior. The values of the AWRT and AWWT are drastically increasing. How-
ever, the makespan, the utilization and the workload stay almost constant. This
indicates that the original NASA workload has almost no wait time while a new
job is started when the previous job is finished.

The approximation of an appropriate scaling factor for the SDSC00 workload
differs from the previous described process as the results for the EASY and
FCFS strategies differ much. Here the AWRT and the AWWT of the FCFS are
more than a magnitude higher than by using EASY-Backfilling. Obviously, the
SDSC00 workload contains highly parallel jobs as this causes FCFS to suffer in
comparison to EASY backfilling. In our opinion, it is more reasonable to use
the results of the EASY strategy for the workload scaling, because the EASY
strategy is more representative for many current systems and for the observed
workloads. However, as discussed above, if the presented scaling methods are
applied to other traces, it is necessary to use the original scheduling method
that caused the workload trace.

4 Conclusion

In this paper we proposed a procedure for scaling different workloads to a uni-
form supercomputer. To this end, the different development steps have been pre-



sented as each motivated the corresponding next step. We used combinations of
duplicating jobs and/or modifying the requested processor numbers. The results
showed again how sensitive workloads react to modifications. Therefore, several
steps were necessary to ensure that the scaled workload showed similar schedul-
ing behavior. Resulting schedule attributes as e.g. average weighted response or
wait time have been used as quality criteria. The significant differences between
the intermediate results for modified workloads indicate the general difficulties
to generate realistic workload models. The presented method is motivated as
the development of more complex scheduling strategies requires workloads with
a careful reproduction of real workloads. Only workload traces include all such
explicit and implicit dependencies. As simulations are commonly used for evalu-
ating scheduling strategies, there is demand for a sufficient database of workload
traces. However, there is only a limited number of traces available which orig-
inate from different systems. The presented method can be used to scale such
workload traces to a uniform resource configuration for further evaluations.

Note, we do not propose that our method actually extrapolates an actual
user behavior for a specific larger machine. Moreover, we scale the real workload
traces to fit on a larger machine while maintaining original workload properties.
To this end, our method includes a combination of generating additional job
copies and extending the job width. In this way, we ensure that some jobs utilize
the same relative number of processors as in the original traces, while original
jobs still occur in the workload. For instance, an existing preference of power of
2 jobs in the original workload is still included in the scaled workload. Similarly,
other preferences or certain job patterns maintain intact even if they are not
explicitly known.

The presented model can be extended to scale other job parameters in the
same fashion. Preliminary work has been done to include memory requirements
or requested processor ranges. This list can be extended by applying additional
rules and policies for the scaling operation.
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A Appendix: Complete Results
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Squashed
Area

430 ref 79285 29306750 66 13905 53442 8335013015
2.41 135157 29306750 67 13242 52897 19890060461
2.42 135358 29306750 67 13475 52979 20013239358

1024 2.43 135754 29306750 67 14267 53771 20130844161
2.45 136922 29306750 68 14480 54036 20322861231
2.46

E
A

S
Y

136825 29306750 68 13751 53267 20455740107
2.47 137664 29306750 69 15058 54540 20563974522
2.48 137904 29306750 69 15071 54611 20486963613

C
T

C

430 ref 79285 29306750 66 19460 58996 8335013015
2.43 135754 29306750 67 17768 57272 20130844161
2.44 136524 29306750 67 18818 58326 20291066216

1024 2.45 136922 29306750 68 19503 59058 20322861231
2.46

F
C

F
S

136825 29306750 68 18233 57749 20455740107
2.47 137664 29306750 69 19333 58815 20563974522
2.48 137904 29306750 69 19058 58598 20486963613
2.49 138547 29306750 69 19774 59291 20675400432

100 ref 28482 29363625 69 24677 75805 2024854282
10.68 166184 29363625 72 24756 75880 21649282727
10.69 165766 29363625 72 24274 75233 21668432748

1024 10.70 166323 29363625 72 24344 75549 21665961992
10.71 165396 29363625 72 24672 75826 21708443586
10.72 166443 29363625 72 24648 75775 21663836681
10.75

E
A

S
Y

167581 29363625 72 24190 75273 21763427500
10.78 170046 29363625 73 24417 75546 21829946042
10.80 168153 29363625 73 25217 76284 21871159818
10.83 168770 29363625 73 25510 76587 21904565195

K
T

H

100 ref 28482 29381343 69 400649 451777 2024854282
10.71 165396 29379434 72 167185 218339 21708443586
10.72 166443 29380430 72 104541 155669 21663836681

1024 10.80 168153 29374047 73 291278 342345 21871159818
10.85 167431 29366917 73 295568 346661 21968343948
10.88 167681 29381624 73 404008 455149 22016195800
10.89

F
C

F
S

167991 29366517 73 424255 475405 22051851208
10.90 169405 29378230 73 281495 332646 22080508136
10.92 168894 29371367 74 415358 466515 22127579593
10.96 169370 29381584 74 539856 590999 22204787743
10.99 170417 29380278 74 491738 542886 22263296356
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128 ref 42049 7945421 47 6 9482 474928903
8.00 188706 7945421 47 2 9478 3799431224
8.01 188659 7945421 47 436 9910 3805309069
8.04 189104 7945421 47 370 9850 3813901379

1024 8.05 190463 7945421 47 466 9952 3815152286
8.06 190221 7945421 47 527 10001 3825085688
8.07

E
A

S
Y

190897 7945421 47 380 9847 3829707646
8.08 191454 7945421 47 483 9967 3829000061
8.09 190514 7945507 47 736 10220 3838797287
8.10 190580 7945421 47 243 9730 3835645184

N
A

S
A

128 ref 42049 7945421 47 6 9482 474928903
8.00 188258 7945421 47 4 9480 3799431224
8.01 188659 7945421 47 562 10036 3805309069
8.02 189563 7945421 47 629 10126 3806198375

1024 8.03 189864 7945421 47 427 9901 3810853391
8.04 189104 7945421 47 534 10013 3813901379
8.05

F
C

F
S

190463 7945421 47 562 10048 3815152286
8.06 190221 7945421 47 721 10194 3825085688
8.07 190897 7945421 47 531 9998 3829707646
8.08 191454 7945421 47 587 10070 3829000061
8.09 190514 7945507 47 605 10088 3838797287

128 ref 67655 63192267 83 76059 116516 6749918264
8.12 308872 63209190 85 70622 111043 54813430352
8.14 309778 63189633 85 71757 112264 54908840905
8.15 310917 63195547 85 78663 119080 55003341172
8.16 310209 63189633 85 76235 116714 55030054463
8.18

E
A

S
Y

310513 63189633 85 74827 115312 55206637895
8.19 310286 63247375 85 77472 118119 55258239565
8.20 311976 63194139 86 78585 119254 55368328613
8.21 312219 63204664 86 75787 116408 55369411171

1024 8.22 313024 63200276 86 75811 116267 55499902234
128 ref 67655 68623991 77 2182091 2222548 6749918264

8.55 321966 68877042 82 2133228 2173666 57703096198
8.56 323298 69093787 82 2154991 2195442 57785593002

1024 8.58 323903 69074629 82 2180614 2221139 58020939264

S
D

S
C

0
0

8.59

F
C

F
S

323908 69499787 82 2346320 2386846 57999342465
8.60 325858 69428033 82 2338591 2379182 58011833809
8.61 325467 69146937 82 2248848 2289373 58074546998
8.63 325458 69258234 82 2219200 2259628 58211844138
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416 ref 75730 31662080 63 13723 46907 8284847126
2.46 130380 31662080 63 13287 46492 20351822499
2.47 131399 31662080 63 13144 46288 20464087105
2.48 131884 31662080 63 13840 46985 20534988559

1024 2.49 131730 31662080 64 13957 47245 20722722130
2.50

E
A

S
Y

132536 31662080 64 14409 47682 20734539617
2.52 133289 31662080 64 14432 47628 20794582470

S
D

S
C

9
5

416 ref 75730 31662080 63 17474 50658 8284847126
2.48 131884 31662080 63 17327 50472 20534988559
2.49 131730 31662080 64 17053 50341 20722722130
2.50 132536 31662080 64 17624 50896 20734539617
2.52

F
C

F
S

133289 31662080 64 17676 50872 20794582470
2.53 133924 31662080 65 17639 50820 20955732920

416 ref 37910 31842431 62 9134 48732 8163457982
2.46 65498 31842431 62 9055 48736 20026074751
2.48 66007 31842431 62 8799 48357 20184805564

1024 2.50 66457 31842431 63 9386 49134 20353508244
2.51

E
A

S
Y

66497 31842431 63 9874 49315 20502723327
2.52 66653 31842431 63 9419 48715 20629070916

S
D

S
C

9
6

416 ref 37910 31842431 62 10594 50192 8163457982
2.47 65842 31842431 62 9674 49361 20120648801
2.48 66007 31842431 62 10008 49566 20184805564
2.49 66274 31842431 63 11312 51211 20374472890

1024 2.50

F
C

F
S

66457 31842431 63 11321 51069 20353508244
2.52 66653 31842431 63 11089 50386 20629070916

Table 5: All Results for Increased Scaling Factors with d = 50.


