
Benefits of Global Grid Computing for Job
Scheduling

Carsten Ernemann , Volker Hamscher, Ramin Yahyapour
Computer Engineering Institute

Otto-Hahn-Str. 4, 44221 Dortmund, Germany
Email: {carsten.ernemann, volker.hamscher, ramin.yahyapour}@udo.edu

Abstract— In addition to other advantages, computational
Grids are considered to utilize the participating compute re-
sources more efficiently as well as to improve the response time
for user jobs. Due to the lack of common large scale global Grids
and corresponding studies on Grid workloads this assumption
is not yet verified. In this paper, the effect of geographical
distribution of Grid resources on the machine utilization and
the average response time is analyzed. To this end, simulations
have been performed. The results show a significant benefit for
the job scheduling quality due to the participation in a true global
Grid. The average weighted response times of all submitted jobs
decrease up to about 30%. The results have been verified using
different workloads and Grid configurations.

I. INTRODUCTION

Grids are considered to provide multiple advantages to
their participants [11]. Despite the fact that the Grid is not
limited on compute resources, the typical application of the
Grid is currently still the execution of computational intensive
tasks on high-performance computers. The resource providers
are compute centers that share their processing powers for
dedicated user communities. Besides the advantage of access-
ing locally unavailable resources, the Grid is usually also
expected to utilize the existing resources more efficiently.
That is, machines are better utilized and users are getting
a better quality of service, for instance, a shorter response
time. However, to our knowledge this assumption has not yet
been verified. In addition, there have been many discussions
whether the Grid can in fact improve the quality of service
for the end-user at all as HPC resources are already heavily
utilized by the existing local user community. Therefore, it is
not clear whether the participation in a Grid and the exchange
of workload does improve either utilization or response time.

In our work we focus only on the Grid scheduling aspects
and try to examine the impact of global Grid computing on
the scheduling quality for computational jobs. In detail, the
effect of the geographical distribution of the resources on the
machine utilization and the average response time for the user
is analyzed. Especially the combination of sharing resources
for jobs of independent user communities and the effect of
the distribution of the participants in different time zones is
examined in this paper. To this end, several simulations have
been performed to evaluate these effects. The background of
this research is given in the following section. The configura-
tions of the conducted simulations are described in Section III
and Section IV. The results are presented and discussed

in Section V. Finally, the paper ends with a conclusion in
Section VI.

II. BACKGROUND

As mentioned above, a typical example for a computational
Grid is currently the collaboration of high-performance com-
puting sites. The participating compute centers have usually a
local user community which gains access to additional remote
compute resources by joining the Grid. Such a sharing of
computational jobs is a major application of Grids. While
Grid technology is becoming more common and several com-
putational Grids have already been established, little is yet
known about the current and future user demand in such a
Grid environment. However, the workload of several single
compute centers is publicly available in the Standard Workload
Archive [20] and have been examined in several publications
[13], [4], [10], [8]. Moreover, these traces are used for the
evaluation of different scheduling strategies for single parallel
machines [14], [17], [18], [9] and for Grid research [12], [2],
[1]. These workload traces include information about all job
submissions on a machine for a certain period of time which
usually ranges over several months and several thousands of
jobs, see Table I. Typically existing large-scale computers from
different compute centers are joint in Grids. In most cases
no new resources are bought to be dedicated only for Grid
use. Therefore, it is reasonable to start with the available
workload information from the compute centers to evaluate
the impact of Grids on the scheduling quality. In this paper,
we especially examine the implications of the fact that the
compute resources as well as the user groups are at different
geographical locations and therefore reside in different time
zones. Requests for computational resources by users vary
depending on the time of day, the weekday etc., see [13], [7].
Therefore, the global aspect of the Grid is expected to have an
impact on the mentioned resource utilization and, even more
interestingly for the user, on the scheduling quality.

III. MODEL

In this section the model is introduced on which the evalu-
ated scenarios are based. First a specification of the underlying
models of sites, machines and jobs is presented, which is
followed by an outline of the scheduling system. A more
extensive description of different Grid scheduling strategies
can be found in [12], [2], [3], [1].



Workload CTC SDSC SP2 LANL KTH
Begin Wed, 06/26/1996,

16:06:01
Fri, 10/01/1993, 00:00:04 Tue, 10/04/1994, 07:01:13 Mon, 09/23/1996,

12:00:32
End Sat, 05/31/1997, 18:43:43 Mon, 10/02/1995,

06:50:33
Tue, 09/24/1996, 05:28:21 Fri, 08/29/1997, 08:34:10

Number of Jobs 79302 67631 122305 28487
Number of nodes 430 128 1024 100
Time Zone GMT-5 GMT-8 GMT-7 GMT+1

TABLE I

THE ORIGINAL WORKLOADS.

A. Machine Model

Our scenario is based on independent computing sites with
existing local workload and management systems. We examine
the impact on job scheduling results if the computing sites
participate in a grid environment. The sites combine their
resources and share incoming jobs. For the sake of simplicity,
in this paper we consider a central Grid scheduler that con-
trols all resource allocations. The local schedulers are only
responsible for starting the jobs after their allocation by the
grid scheduler. Note, that for a real world application a single
central Grid scheduler would be a critical limitation. However,
implementations are possible, in which site-autonomy is still
maintained but the resulting schedule would be the same as
created by a central Grid scheduler.

We assume that each participating site in the computational
grid has a single MPP (Massive Parallel Processor system),
which consists of several nodes. Nodes (resources) are single-
processor systems with local memory and hard disk. The nodes
are linked with a fast interconnection network that does not
favor any specific communication pattern inside the machine
[6]. The actual mapping of a job on the nodes is neglected
[9]. The machines use space-sharing and run the jobs in an
exclusive fashion. Moreover, the jobs are not preempted nor
time-sharing is used. Therefore, once started a job runs until
completion. Furthermore, a job is cancelled if it exceeds its
previously requested allocation time.

For simplification all nodes in this study are identical. The
machines at the different sites only differ in the number
of nodes. The existence of different resource types would
limit the number of suitable machines for a job. Typically a
preselection phase takes place ahead of the actual scheduling
process and generates a reduced set of suitable resources. In
our study we neglect this preselection and focus on the job
scheduling process.

B. Job Model

Jobs are submitted by independent users at the local sites.
The scheduling problem is an on-line scenario without any
knowledge of future job submissions. Our evaluations are
restricted to batch jobs, as this job type is dominant on most
MPP systems. A job request consists of several parameters
as e.g. the requested run time and the requested number of
resources. After submission a job requests a fixed number of
resources that are necessary for starting the job. This number

is not changed during the execution of the job. That is, jobs
are not moldable nor malleable [9], [5]. It is the task of the
scheduling system to allocate the jobs to resources and to
determine the starting time. The jobs are executed without
further user interaction.

C. Scheduling System

In our examination of a job sharing scenario the scheduling
algorithm consists of two steps. In the first step the earliest
start time of the allocation on all available machines deter-
mined and in the second step a machine is selected .

There are several methods possible for selecting machines.
Earlier simulations (presented in [12]) showed the best results
for a selection strategy called BestFit. In this strategy a
particular machine is chosen on which the job leaves the
least number of free nodes if the new job is allocated to that
machine.

Backfilling is used as the scheduling strategy which has
been introduced by Lifka [15] and is often in use on parallel
machines. This strategy requires knowledge of the expected
job execution time and can be applied to any greedy list
schedule. If the next job in the list cannot be started due to
a lack of available resources, backfilling tries to find another
job in the list which can use the idle resources. But it will
not postpone the execution of any next jobs in the list. In
addition EASY backfilling has been used which is an extension
to normal backfilling where only the next job is not delayed
[19].

Note, that this scenario focuses on the scheduling impact
for a job sharing strategy only. That is, jobs are distributed in
the Grid but run on a single HPC machine only. That is, input
data is only considered to be transferred to the machine before
the job execution while output data of the job is transferred
back afterwards. This network communication is neglected in
our evaluation as this latency can usually be hidden in pre-
and post-fetching phases without regards to the actual job
execution phase. As shown later in this paper, the average wait
time of a job before its execution is at least several minutes.
Assuming that HPC resources are usually well-connected, the
data overhead will have no impact on most jobs.

IV. EXPERIMENTS

Several simulations with different resource configurations
and workload traces have been executed which will be pre-
sented in the following sections.



A. Workload Traces

As mentioned earlier, our analysis is based on real workload
traces. The used traces and the corresponding information
about the resource configuration can be found in Table I.

It is well known that the demand in compute power is not
equally distributed over the time of day [16]. The Figure 1
details the time distribution of the CTC-Trace. The resource
consumption is unbalanced and has an absolute maximum
around noon and an absolute minimum at around 3 am. The
other workloads show a similar behavior, but with shifted
peaks. While the workloads of KTH, LANL and CTC have
their peak utilization during daytime, the peak for SDSC is
shifted towards 5 am. All times are given as local time.

Fig. 1. Aggregated Resource Consumption (Squashed Area) over the Time
of Day for all CTC Jobs.

Fig. 2. Aggregated Resource Consumption (Squashed Area) over each
Weekday for all CTC Jobs.

Additionally the total resource consumption varies with
the day of the week, as shown in Figure 2 for the CTC-
workload. This reasons the mentioned synchronization of the
used workloads, as shifting the workloads by a day or more
would most likely have an impact on the scheduling quality.

As the available workload traces do not cover the same
period of time nor start at the same day of week or time of day,

modifications are necessary. In our simulation, the workload
traces are combined for modeling the workload of a global
Grid. Therefore, we transformed the workloads to the effect
that all traces begin at the same weekday and at the same time
of day. To this end, we removed all jobs until the first Monday
at midnight. Note, that the alignment is related to the local time
and so the time differences corresponding to the given time
zones are maintained. Note also that this modification results
in a loss of jobs within each workload. In consideration of the
size of the workload traces only marginal number of jobs is
affected. The modified number of jobs is presented in Table II.

Workload Name CTC SDSC LANL KTH

Number of Jobs 79272 67503 120870 28481
% of original 99.99 99.81 98.83 99.98

TABLE II

THE MODIFIED WORKLOADS.

B. Resource Configurations

After introducing the used workloads, the corresponding
resource configurations and assumptions will be explained
next. We have chosen 3 basic configurations. The first con-
figuration consists of resources in 4 different time zones. The
next configuration includes machines within 6 different time
zones. In both configurations the examined time zones have
been equally distributed. That is, in configuration 1 the time
difference between two adjacent resources is 6 hours whereas
the difference in configuration 2 is 4 hours.

The last configuration consists of all original machines.
So this is the most realistic case as the simulation indicates
how the scheduling result is improving dependent on the
time zone. For the last resource configuration three different
assumptions were used for the simulation. The first variant
produces the scheduling result if all machines are in the same
time zone. During the second simulation it is assumed that
all machines are equally distributed. The last simulation uses
the original time zones. Note, that for the third configuration
all workloads are cut to span only 11 month caused by the
smallest workload trace. This is necessary to assure that each
site creates sufficient workload for the whole simulation. In
addition, for each configuration scenario a simulation with-
out job sharing has been executed (”Trace single”) which is
used as a reference. All considered simulation scenarios are
summarized in Table III.

In order to compare the simulation results between the first
two underlying configurations we have chosen a constant num-
ber of 6 machines. Therefore there are two machines located
at site 1 and 3 respectively. Both of these two configurations
were simulated with all workloads (Table II). Note, that in
each case the whole simulation process starts at midnight on
Monday for the machine at site 1. The machine at site 2 starts
either 4 or 6 hours later.

Note that due to the different offset in time for the first jobs,
the startup phase of the schedule is degenerated. While at the



end of the simulation the variance of the schedule length for
different sites is considered for the calculation of the metrics,
see [1]. Nevertheless the whole amount of workload is rather
large in comparison to these marginal effects.

Name # of Site Configurations
Sites (Workload/Machine,Time Zone)

CTC single 6 (CTC,0h),(CTC,0h),(CTC,0h),
(CTC,0h),(CTC,0h),(CTC,0h)

SDSC single 6 (SDSC,0h),(SDSC,0h),(SDSC,0h),
(SDSC,0h),(SDSC,0h),(SDSC,0h)

KTH single 6 (KTH,0h),(KTH,0h),(KTH,0h),
(KTH,0h),(KTH,0h),(KTH,0h)

LANL single 6 (LANL,0h),(LANL,0h),(LANL,0h),
(LANL,0h),(LANL,0h),(LANL,0h)

CTC TZ 1 6 (CTC,0h),(CTC,0h),(CTC,0h),
(CTC,0h),(CTC,0h),(CTC,0h)

SDSC TZ 1 6 (SDSC,0h),(SDSC,0h),(SDSC,0h),
(SDSC,0h),(SDSC,0h),(SDSC,0h)

KTH TZ 1 6 (KTH,0h),(KTH,0h),(KTH,0h),
(KTH,0h),(KTH,0h),(KTH,0h)

LANL TZ 1 6 (LANL,0h),(LANL,0h),(LANL,0h),
(LANL,0h),(LANL,0h),(LANL,0h)

CTC TZ 4 6 (CTC,0h),(CTC,0h),
(CTC,+6h),(CTC,+12h),
(CTC,+12h),(CTC,+18h)

SDSC TZ 4 6 (SDSC,0h),(SDSC,0h),
(SDSC,+6h),(SDSC,+12h),
(SDSC,+12h),(SDSC,+18h)

KTH TZ 4 6 (KTH,0h),(KTH,0h),
(KTH,+6h),(KTH,+12h),
(KTH,+12h),(KTH,+18h)

LANL TZ 4 6 (LANL,0h),(LANL,0h),
(LANL,+6h),(LANL,12h),
(LANL,+12h),(LANL,+18h)

CTC TZ 6 6 (CTC,0h),(CTC,+4h),
(CTC,+8h),(CTC,+12h),
(CTC,+16h),(CTC,+20h)

SDSC TZ 6 6 (SDSC,0h),(SDSC,+4h),
(SDSC,+8h),(SDSC,+12h),
(SDSC,+16h),(SDSC,+20h)

KTH TZ 6 6 (KTH,0h),(KTH,+4h),
(KTH,+8h),(KTH,+12h),
(KTH,+16h),(KTH,+20h)

LANL TZ 6 6 (LANL,0h),(LANL,+4h),
(LANL,+8h),(LANL,+12h),
(LANL,+16h),(LANL,+20h)

ALL single 4 (CTC,0h),(SDSC,0h),
(LANL,0h),(KTH,0h)

ALL TZ 1 4 (CTC,0h),(SDSC,0h),
(LANL,0h),(KTH,0h)

ALL TZ 4 4 (KTH,0h),(CTC,+6h),
(LANL,+12h),(SDSC,+18h)

ALL org 4 (KTH,0h),(CTC,+6h),
(LANL,+8h),(SDSC,+9h)

TABLE III

SIMULATED CONFIGURATIONS.

V. EVALUATION

One measure for the schedule quality is the average response
time weighted by the job’s resource consumption (AWRT)
[17]. We define it as follows:

AWRT =

∑

j∈Jobs
(SAj · (endTimej − submitTimej))

Total SA
(1)

The resource consumption of a job, called squashed area
(SA), can be described as the product of the job’s run time
and the number of requested resources. Therefore large jobs
have a larger resource consumption than smaller jobs. The
squashed area of a single job j and the total squashed area
can be defined as follows:

SAj = reqResourcesj · (endTimej − startTimej) (2)

Total SA =
∑

j∈Jobs

SAj (3)

The response time of a job is weighted by its resource
consumption to prevent that smaller jobs have a relatively
larger impact on the metric than jobs with a higher resource
consumption.

Another criterion for the schedule quality is the slow down
(SD):

SD =
(endTimej − submitTimej)

runtimej
(4)

Correspondingly, the average weighted slow down is defined
as:

AWSD =

∑

j∈Jobs
SAj · SDj

Total SA
(5)

From the user’s point of view the quality of the schedule
can be evaluated considering the wait time:

WTj = startTimej − submitTimej (6)

We define the average weighted wait time (AWWT) as
follows:

AWWT =

∑

j∈Jobs
(SAj · WTj)

Total SA
(7)

The simulation results for the CTC workload are presented
in Figure 3. The comparison of the three scenarios illustrates
the impact of the different temporal offsets on the AWRT. The
scenario with 4 sites in 4 time zones with a difference in time
of 6 hours between neighbors shows an improvement with a
decrease of about 14%.

As shown in Figure 3, the EASY backfilling strategy yields
better results than backfilling in almost all cases. Therefore, we
limit the following results on the EASY backfilling strategy.

In Table IV the AWRTs are displayed for the 4 uniform
workloads.

Trace single 1 TZ 4 TZ 6 TZ
CTC 100% 95.6% 85.4% 85.3%
KTH 100% 89.1% 79.2% 78.7%
LANL 100% 87.1% 74.0% 73.2%
SDSC 100% 74.6% 69.8% 70.2%

TABLE IV

COMPARISON OF AWRTS USING EASY BACKFILLING.



Workload Utilization AWWT AWRT AWSD
in% in s in s

CTC single 55.29 13470 52977 2.0571
CTC 1 TZ 66.34 11127 50634 1.8112
CTC 4 TZ 66.20 5744 45251 1.3463
CTC 6 TZ 66.18 5678 45184 1.3123
KTH single 58.17 24232 75153 3.2606
KTH 1 TZ 69.80 16074 66995 2.4119
KTH 4 TZ 69.64 8597 59519 1.6676
KTH 6 TZ 69.62 8207 59129 1.605

LANL single 42.48 2461 11802 1.7069
LANL 1 TZ 55.72 1785 10287 1.4807
LANL 4 TZ 55.67 236 8739 1.0476
LANL 6 TZ 55.66 141 8644 1.0273
SDSC single 68.87 75940 112929 6.4896
SDSC 1 TZ 82.64 47231 84220 4.5284
SDSC 4 TZ 82.59 41840 78829 3.7995
SDSC 6 TZ 82.58 42334 79323 3.7064

TABLE V

COMPLETE RESULTS.

The decrease of the AWRT varies depending on the number
of time zones and the workload between 5% and 30%. In case
of the SDSC workload this means that the computing results
are more than 9 hours earlier available in the weighted average,
see Table V. In general, the participation in the Grid yields an
advantage without regard whether the machines are globally
distributed or not. However, in all cases in which the sites are
distributed over several different time zones, the response time
is reduced furthermore.

As pointed out before, the CTC workload has its peak
utilization around noon and the minimum utilization at 3 am.
Placing the workload in different time zones leads to a
combination of high utilization at one site and low utilization
at another site. Figure 4 shows the correlation for a scenario
with 4 different time zones, each with an offset of +6 hours
to the next assigned time zone. This example shows how the
shifted workload distribution over different time zones yields
an load balancing effect with subsequent reduction of the
AWRT.

In addition, scenarios with combinations of different work-
loads have been examined. Table VI shows the results of the

Fig. 3. AWRT for the CTC based scenarios (CTC).

0,00E+00

2,00E+08

4,00E+08

6,00E+08

8,00E+08

1,00E+09

1,20E+09

1,40E+09

1,60E+09

1,80E+09

0 2 4 6 8 10 12 14 16 18 20 22

Hours

A
g

g
re

g
at

ed
 S

q
u

as
h

ed
 A

re
a 

in
 R

es
o

u
rc

es
*S

ec
o

n
d

s 

0 h +6 h +12 h +18 h

Fig. 4. Aggregated SA for different Time Zones (CTC 4 TZ).

scenarios in which all sites are either located in a single time
zone (ALL 1 TZ), or artificially distributed over 4 time zones
(ALL 4 TZ), or at their location in reality (ALL org). For
reference, the results are given for participating in a Grid with
job sharing or without (single).

First, it can be seen in Table VI that the configuration with
the sites located on their original location yield better results
than the artificial equal distribution in 4 time zones. However,
best results for our example have been achieved with all
machines located in the same time zone. This can be explained
by the different workload distribution as mentioned before.
The SDSC workload has the highest resource demand around
5 am and its lowest resource consumption in the afternoon
around 5 pm, see Figure 5. This leads to load balancing effects
with the sites CTC and LANL which have their peaks around
noon. This causes an additional positive effect on the overall
scheduling quality.

Workload Util. AWWT AWRT AWSD
in % in s in s

ALL 1 TZ 60,83 2537 25799 1,484
ALL 1 TZ single 55,13 8088 29727 2,015
ALL 4 TZ 60,70 3132 26399 1,654
ALL 4 TZ single 55,03 8096 29746 2,015
ALL org 60,71 2764 26032 1,528
ALL org single 55,03 8095 29743 2,015

TABLE VI

RESULTS WITH AND WITHOUT JOB-SHARING.

Comparing the AWWT of the ALL org scenario with the
ALL org single without job sharing, proves the advantage of



Fig. 5. SA for all SDSC Jobs.

a Grid using job sharing. The AWWT decreases by about 66%
for the EASY backfilling algorithm, as shown in Table VI.

Examinations of the resource utilization at the sites showed
that the overall utilization is not significantly changed in
the configurations with single workloads and homogeneous
machines. This indicates that the load balancing effects are
caused by under-utilized sites which are unproportionately
responsible for the overall improvements in the AWRTs.

However, in the third scenario with combinations of the
different workloads there is an increase of utilization from
about 55% to 60%. In this case, the different utilizations of
the participating sites are balanced.

VI. CONCLUSION

Simulations have been performed to evaluate the effects
of a global Grid constituted by different compute centers
which are located in different time zones. In our work we
focused on the Grid scheduling aspects and therein showed
for the first time that the application of a simple job sharing
strategy yields a significant overall advantage. We were able
to quantify the effect on the response time. Moreover, the
impact of the global distribution of resources being in different
time zones has been proven to be an important factor. This
shows nicely that a truly global Grid is favorable instead
of building several closed Grids in single countries as it is
currently implemented by many initiatives. In our examined
scenarios, the average weighted response time of all submitted
jobs decrease up to about 30%. The results have been verified
in several configurations using different workloads and time
zone distributions. The presented quantitative examinations
highly motivate the participation in a global Grid.

REFERENCES

[1] C. Ernemann, V. Hamscher, U. Schwiegelshohn, A. Streit, and
R. Yahyapour. Enhanced Algorithms for Multi-Site Scheduling. In
Proceedings of the 3rd International Workshop on Grid Computing,
Baltimore. Springer–Verlag, Lecture Notes in Computer Science LNCS,
2002.

[2] C. Ernemann, V. Hamscher, U. Schwiegelshohn, A. Streit, and
R. Yahyapour. On Advantages of Grid Computing for Parallel Job
Scheduling. In Proc. 2nd IEEE/ACM Int’l Symp. on Cluster Computing
and the Grid (CCGRID2002), Berlin, May 2002. IEEE Press.

[3] C. Ernemann, V. Hamscher, A. Streit, and R. Yahyapour. On Effects of
Machine Configurations on Parallel Job Scheduling in Computational
Grids. In International Conference on Architecture of Computing
Systems, ARCS, pages 169–179, Karlsruhe, April 2002. VDE.

[4] C. Ernemann, B. Song, and R. Yahyapour. Scaling of Workload
Traces. In D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn, editors,
Job Scheduling Strategies for Parallel Processing: 9th International
Workshop, JSSPP 2003 Seattle, WA, USA, June 24, 2003, volume 2862
of Lecture Notes in Computer Science (LNCS), pages 166–183. Springer-
Verlag Heidelberg, October 2003.

[5] D. Feitelson. A Survey of Scheduling in Multiprogrammed Parallel
Systems. Research report rc 19790 (87657), IBM T.J. Watson Research
Center, Yorktown Heights, NY, Feb. 1995.

[6] D. Feitelson and L. Rudolph. Parallel Job Scheduling: Issues and Ap-
proaches. In D. Feitelson and L. Rudolph, editors, IPPS’95 Workshop:
Job Scheduling Strategies for Parallel Processing, pages 1–18. Springer–
Verlag, Lecture Notes in Computer Science LNCS 949, 1995.

[7] D. G. Feitelson. Workload Modeling for Performance Evaluation.
In M. C. Calzarossa and S. Tucci, editors, Performance Evaluation
of Complex Systems: Techniques and Tools, pages 114–141. Springer
Verlag, 2002. Lect. Notes Comput. Sci. vol. 2459.

[8] D. G. Feitelson and B. Nitzberg. Job Characteristics of a Production
Parallel Scientific Workload on the NASA Ames iPSC/860. In D. G.
Feitelson and L. Rudolph, editors, IPPS’95 Workshop: Job Scheduling
Strategies for Parallel Processing, pages 337–360. Springer, Berlin,
Lecture Notes in Computer Science LNCS 949, 1995.

[9] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, and K. C. Sevcik.
Theory and Practice in Parallel Job Scheduling. Lecture Notes in
Computer Science, 1291:1–34, 1997.

[10] D. G. Feitelson and A. M. Weil. Utilization and Predictability in
Scheduling the IBM SP2 with Backfilling. In Proc. 12th Int’l Parallel
Processing Symp. and the 9th Symp. on Parallel and Distributed
Processing, pages 542–547, Los Alamitos CA, 1998. IEEE Computer
Society Press.

[11] I. Foster and C. Kesselman, editors. The GRID: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann, 1998.

[12] V. Hamscher, U. Schwiegelshohn, A. Streit, and R. Yahyapour. Evalua-
tion of Job-Scheduling Strategies for Grid Computing. In Proc. 7th Int’l
Conf. on High Performance Computing, HiPC-2000, pages 191–202,
Bangalore, Indien, 2000. Springer, Berlin, Lecture Notes in Computer
Science LNCS 1971.

[13] J. Jann, P. Pattnaik, H. Franke, F. Wang, J. Skovira, and J. Riordan.
Modeling of Workload in MPPs. In D. Feitelson and L. Rudolph, editors,
IPPS’97 Workshop: Job Scheduling Strategies for Parallel Processing,
pages 94–116. Springer–Verlag, Lecture Notes in Computer Science
LNCS 1291, 1997.

[14] J. Krallmann, U. Schwiegelshohn, and R. Yahyapour. On the De-
sign and Evaluation of Job Scheduling Systems. In D. G. Feitelson
and L. Rudolph, editors, IPPS/SPDP’99 Workshop: Job Scheduling
Strategies for Parallel Processing. Springer, Berlin, Lecture Notes in
Computer Science, LNCS 1659, 1999.

[15] D. A. Lifka. The ANL/IBM SP Scheduling System. In D. G. Feitelson
and L. Rudolph, editors, IPPS’95 Workshop: Job Scheduling Strategies
for Parallel Processing, pages 295–303. Springer, Berlin, Lecture Notes
in Computer Science LNCS 949, 1995.

[16] U. Lublin and D. G. Feitelson. The Workload on Parallel Supercom-
puters: Modeling the Characteristics of Rigid Jobs. Technical Report
2001-12, Hebrew University, Oct 2001.

[17] U. Schwiegelshohn and R. Yahyapour. Analysis of First-Come-First-
Serve Parallel Job Scheduling. In Proceedings of the 9th SIAM
Symposium on Discrete Algorithms, pages 629–638, January 1998.

[18] U. Schwiegelshohn and R. Yahyapour. Improving First-Come-First-
Serve Job Scheduling by Gang Scheduling. In D. Feitelson and
L. Rudolph, editors, IPPS’98 Workshop: Job Scheduling Strategies for
Parallel Processing, pages 180–198. Springer–Verlag, Lecture Notes in
Computer Science LNCS 1459, 1998.

[19] J. Skovira, W. Chan, H. Zhou, and D. Lifka. The EASY — LoadLeveler
API Project. Lecture Notes in Computer Science, 1162:41–47, 1996.

[20] Parallel Workloads Archive. http://www.cs.huji.ac.il/labs/paral-
lel/workload/, Juni 2004.


