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Abstract

Knowledge about the workload is an important aspect
for scheduling of resources as parallel computers or Grid
components. As the scheduling quality highly depends on
the characteristics of the workload running on such re-
sources, a representative workload model is significant for
performance evaluation. Previous approaches on work-
load modelling mainly focused on methods that use statis-
tical distributions to fit the overall workload characteris-
tics. Therefore, the individual association and correlation
to users or groups are usually lost. However, job scheduling
for single parallel installations as well as for Grid systems
started to focus more on the quality of service for specific
user groups. Here, detailed knowledge of the individual
user characteristic and preference is necessary for devel-
oping appropriate scheduling strategies. In the absence of
a large information base of actual workloads, the adequate
modelling of submission behaviors is sought. In this paper,
we propose a new workload model, called MUGM (Mixed
User Group Model), which maintains the characteristics of
individual user groups. The MUGM method has been fur-
ther evaluated by simulations and shown to yield good re-
sults.

1 Introduction

The scheduling in many variants has been examined
in research for a very long time. Especially parallel job
scheduling is considerably well understood. Here, the
scheduling system is a vital component for the whole paral-
lel computer as the applied scheduling strategy has direct
impact on the overall performance of the computer sys-
tem. The evaluation of scheduling algorithms is important
to identify appropriate algorithms and the corresponding
parameter settings. Especially as the system administrator
of a real implementation might prefer a higher flexibility
in setting up individual access policies and often complex
scheduling rules. Especially the advent of Grid computing
and the need for efficient Grid scheduling strategies inhibit

many requirements that are difficult to analyze theoretically.

In contrast to conventional parallel computing the
scheduling objective in a Grid environment is not clear.
Most scheduling strategies on parallel computers are opti-
mized to minimize the response times, makespan or to in-
crease the machine utilization. In a Grid environment the
scheduling objective depends on the individual choice of
the participants. Here, individual users may prefer the min-
imization of cost, while others accept a longer wait time
in favor of a better quality of service, e.g. more or faster
processors available. Thus, much research in this area in-
volve scheduling strategies that include multi-criteria opti-
mization and market-oriented methods [2, 9]. The evalua-
tion of these strategies requires realistic workload models
that do not neglect the individual submission behavior of
user groups. Due to the absence of accepted Grid workload
models much analysis re-use the available workload infor-
mation from parallel computer systems. This is reasonable
as these computing sites and their respective user groups
are naturally also the corner-stones of the current Grid user
community. Therefore, thorough knowledge of the work-
load characteristic in regards to these user groups is needed
for better evaluation of the scheduling systems.

It is known that there is no random distribution of job
parameter values, see e.g. Feitelson and Nitzberg [13]. In-
stead, the job parameters depend on several potentially un-
known patterns, relations, and dependencies. However, the
number of users on a parallel computer is usually not very
large. That is, their individual behavior has still a major im-
pact on the scheduling outcome of many strategies. Hence,
a theoretical or practical analysis of random workloads will
not provide the desired information. A trial and error ap-
proach on a production machine is tedious and significantly
affects the system performance and therefore often not prac-
ticable for production systems.

Thus simulations are very often used during the design
and evaluation process of scheduling systems. These simu-
lations are usually based on real trace data or on a workload
model. Workload models, as by Jann et al. [17] or Feitelson
and Nitzberg [13], enable a wide range of simulations by al-
lowing job modifications, like a varying amount of assigned



processor resources. However, many unknown dependen-
cies and patterns exist in actual workloads of real systems.
Here, the consistence of a statistical generated workload
model with real workloads is difficult to guarantee. Pre-
vious research focused on modelling the summarized and
combined output of all features in a workload of a paral-
lel computer [21, 3]. They analyzed the global character
of several workload attributes (e.g., runtime, parallelism,
arrival time) and applied certain distributions to describe
them. However these models were general description and
did not consider individual user submissions.

For many application scenarios a more detailed model is
preferred, in which characteristics on the user or user-group
model are preserved instead of a general description. In this
paper such a workload model is presented. Such a model
can not only give a straightforward illustration on the user’s
submission characteristics but also provide a more intuitive
method to understand the usage of machines by users. This
is especially important for research in Grid environments.
Therefore in this paper we focus on analyzing and mod-
elling existing user groups from available workloads from
real installation. Following we propose the novel model
MUGM (Mixed User Group Model) for analysis of job char-
acteristics from several different user groups.

This paper is structured as follows: In Section 2 we out-
line the workload modelling problem for parallel computers
in more detail. After a brief analysis of workload charac-
teristics in parallel environment in Section 3, we provide a
description of the proposed MUGM method. In Section 5,
we discuss the experimental results for several real work-
loads. Finally, we end the paper in Section 6 with a short
conclusion and outlook on future work.

2 Related Work on Workload Modelling

In this paper we analyze several parallel computer
workloads that are available from the Standard Workload
Archive [25]. These workloads were gathered at different
environments of larger parallel computing sites. Many pub-
lications adopted these traces for their workload modelling
and evaluation of scheduling algorithms [23, 11, 14]. The
details of the workloads are given in Table 1. It is notewor-
thy that the named trace from NASA is quite old and has
an unusual submission characteristic, therefore we did not
include it in our study.

As mentioned above, the most common approach for
workload modelling is to create a combined model for an
observed workload [4, 5]. Generally this summary is a sta-
tistical distribution or a collection of such for various work-
load attributes (e.g. runtime, parallelism, I/O, memory).
The new synthetic workload is created by sampling from
these distributions. The construction of such models is done
by fitting the overall attribute characteristic to well-known

KTH

 runtime[s]

F
re

qu
en

cy

0
50

0
10

00
15

00

1 101 102 103 104 105

Figure 1. Histogram of Job Runtimes.

distributions by comparing the histogram observed in the
data to the expected frequencies of the theoretical distribu-
tion, i.e., Chi-square or KS test.

Since the runtime and the parallelism of jobs are two
of the most important parameters for many parallel sys-
tems [10, 1], we currently limit ourselves to the modelling
these two attributes and focus on them in the following part
of the paper. The modelling of the arrival process is also
very important and has been addressed by many papers,
see [20, 3, 21] for more detailed information about the job
arriving process modelling.

The job runtime is the duration that a job occupies during
execution on a processor set. In general, the runtime varies
widely. Figure 1 shows a histogram of the runtime in the
KTH workload trace. Here, the runtime varies significantly
from 1 to over 105 seconds. Such a distribution charac-
teristic is called heavy-tail. To model a heavy-tail runtime
distribution, Downey [6] proposed a multi-stage log-normal
distribution. This method is based on the observation that
the empirical distribution of runtime in log space was ap-
proximately linear. Jann et.al. [17] proposed a more general
model by using a Hyper-Erlang distribution for the runtime.
They used moment estimation to model the distribution pa-
rameters. Feitelson [12] argued that a moment estimation
may suffer from several problems, including incorrect rep-
resentation of the shape of the distribution and high sen-
sitivity to sparse high value samples. Instead, Lublin and
Feitelson [21] selected a Hyper-Gamma distribution. They
calculated the parameters by Maximum Likelihood Estima-
tions.

Another important aspect of workload modelling is the
job parallelism, that is, the number of nodes or proces-
sors a job requires. It has been found that the job paral-
lelism in many workloads displays two significant charac-
teristics [6, 11]: the power of 2 effect, as users tend to sub-
mit jobs requiring power of 2 node sets; and a high number



Identifier NASA CTC KTH LANL SDSC
SP2

SDSC
95

SDSC
96

Machine iPSC/860 SP2 SP2 CM-5 SP2 SP2 SP2
Period 10/01/93-

12/31/93
06/26/96-
05/31/97

09/23/96-
08/29/97

04/10/94-
09/24/96

04/28/98-
04/30/00

12/29/94-
12/30/95

12/27/95-
12/31/96

Processors 128 430 100 1024 128 416 416
Jobs 42264 79302 28490 201378 67667 76872 38719
Users 69 679 214 213 428 97 59

Table 1. Used Workloads from the SWF Archive.
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Figure 2. Histogram of Job Parallelism in the
KTH Workload

of sequential jobs that require only a single node. These two
features can be seen in Figure 2. Lo et.al. [20] found empir-
ically that these effects would significantly affect the evalu-
ation of scheduling performance. Feitelson [11] proposed a
harmonic distribution which emphasized small parallelism
and the other specific sizes like power of 2. Later, Lublin
and Feitelson used job partitions to explicitly emphasized
power of two effects in parallelism [21].

Besides the isolated modelling of each attribute, the
correlations between different attributes were addressed as
well. For example, Lo et.al. [20] demonstrated that the ne-
glection of correct correlation between job size and runtime
yields misleading results. Therefore Jann et.al. [17] divided
the job sizes into subranges then created a separate model
of the runtime for each range. Furthermore, Feitelson and
Lublin [21] considered the correlation according to a two-
stage Hyper-Exponential distribution.

Although these models can provide an overall descrip-
tion of a workload, they can not give an deeper insight
on the individual job submission behavior. Since the ac-
tive user community on a parallel computer is usually quite
small, e.g. hundreds of users as shown in Table 1, it would
be quite beneficial to associate the model and the resulting

# of Job Submission # of Users (%)
[1, 100[ 68.22
[100, 500[ 18.22
[500, 1000[ 12.15
[1000, 2000[ 0.93
more than 2000 0.47

Table 2. Comparison of User Submissions.

workload with users or user groups. With such user-level
information it is possible to analyze the impact of certain
groups to the overall system performance. In addition, it
is possible to associate different scheduling objectives and
methods with the different user groups. This can help to
evaluate and analyze scheduling strategies for Grid scenar-
ios. To this end, a new workload model is proposed in this
paper that maintains user and group information. In the next
section, we will provide a brief view on the characteristics
of individual user submission behavior in real workloads.

One of the obvious characteristics we can observe in
the 6 examined workloads is the sparsity of users. That
means, only a few users are responsible for thousands of
jobs, while many other users just generate very few jobs.
Table 2 shows the number of submissions from individual
users in the KTH workload: only a couple of users with
more than 1000 job submissions and more than than 25
users with less than 1000 job submission. Actually, there
are about 30,000 jobs from over 200 users. This effect is
similar for all other workload traces.

Another aspect about the workload data is the hetero-
geneity of the job submission pattern between different
users. In Figure 3 the averages of job parallelism are plot-
ted for the top 10 users with the most submissions: the het-
erogeneity can be seen clearly as some try to submit jobs
with high parallelism (e.g. user IDs={91,93}), while some
tend to make submissions with lower parallelism (e.g. user
IDs={18,67}). We have also examined the other workloads
and found similar results.

The main challenge in the construction of a new model
addressing the individual submission behaviors is to find a
trade-off between two extremes. One extreme is the sum-
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Figure 3. Comparison of Average Job Paral-
lelism for an Individual Users.

marization in a general probability model for the whole
job submissions. As the other extreme a unique model is
created for each user based on his or her past transaction
data, e.g. using hundreds of distributions for different users.
As a consequence, we would like to get a mixture of user
groups that summarizes similar user submission behaviors,
while each of these groups has distinct features. Our pro-
posed model allows to address the user submission behav-
iors, while it maintains simplicity and scalability.

3 Modelling

Before we describe our MUGM model in more detail,
some definitions are given. We denote D as the set of n
jobs by D = {d1, . . . , dn}, where di represents the param-
eter set for job i, including e.g. the number of processors,
the expected runtime, memory. This parameter set can eas-
ily be extended to contain additional job information. As
previously mentioned, we currently focus only on the pa-
rameters parallelism and runtime. Thus, we use p(di) to
represent the parallelism and r(di) for the runtime of job i.
The jobs are generated by J users, where the user j gener-
ates job i: u(di) = j, j ∈ [1, J ].

In our MUGM model the workload is analyzed to clas-
sify users into K user groups. Note that we do not as-
sume these K groups necessarily represent the true physical
groups in the real environment. The membership of a user
j is identified by m(j) = k, k ∈ [1,K]. The users in the
same group are assumed to have a similar job submission
behavior. Thus the kth group 1 ≤ k ≤ K will represent a
specific model for generating corresponding jobs.

Figure 4 gives an overview on the construction of the
MUGM model. We first find clusters of similar jobs us-
ing cluster algorithms. Then each user is characterized by
a feature vector, which describes the contribution of this
user to each job cluster. Afterwards, we use these feature

Data
processing

Job
clustering

User
grouping

Group
Analyzing

Group
modelling

Synthetic
workload
generation

Figure 4. Process of the MUGM Model.

vectors to identify user groups. To this end, the users are
clustered by their feature vectors. In this way the users are
grouped by their similar contribution pattern to the previ-
ously identified common job clusters. Next, we analyze and
model the submissions characteristic of each user group.
The combination of this submission models generates the
complete MUGM workload. In the following, each step in
the MUGM process is described in more detail.

3.1 Data preprocessing

Parallelism and runtime values both cover a wide range
that is only bound by zero. Therefore, it is common practice
to apply a logarithmic transformation for analysis and mod-
elling. Here, a log transformations based on 2 was used.
That is, parallelism and runtime are transformed by lg p(di)
and lg r(di). Zero values are neglected as they are very rare
(less than 0.3%).

3.2 Job clustering

The first step of our MUGM model is to cluster all jobs
into several groups. Parallelism and runtime are separately
clustered in order to maintain sharper partition border. That
is, the different job clusters differ in parallelism or runtime.
Each job is uniquely assigned to one cluster.

To cluster the parallelism we round the values p(D) to
the �lg p(D) + 0.5�. Such a clustering method is based on
the above mentioned observation of the power of 2 prefer-
ence in parallelism. For the runtimes we choose a clustering
algorithm called CLARA proposed in [18] because of its
computational efficiency.

This algorithm is based on the Partition Around Medoids
(PAM) method which is also presented in [18]. The PAM
clustering procedure takes the unprocessed items as input
and produces a set of cluster centers or so called ”medoids”.
In the following, we briefly describe the general approach
of the PAM method. Let X = {x1, . . . , xT } be the input
element set of size T , and H be the number of clusters, and
M = (M1, . . . ,MH) denotes the list of identified mediods
in X . The minimal distance of each element to the mediods



can be calculated by

distance(xt,M) = minh∈[1,H]{||xt,Mh||}.
Next, the PAM method selects the set of medoids M∗

by minimizing the sum of the distances f(M) =∑
t∈T distance(xt,M).
It can be seen that the complexity of a single iteration is

O(H · (T −H)2). It is therefore computationally quite time
consuming for large values of T and H . For comparison,
T in our evaluation equals the number of jobs n which is
larger than 20,000. The difference between the PAM and
CLARA algorithms is that the latter is uses only a sampled
subset S ⊂ X before applying the same PAM method. This
reduces the complexity to O(H · |S|2 + H · (T − H)) for
each iteration comparing to the O(H · (T − H)2).

In our case each element is a runtime value. We use
the Euclidean distance between two logarithmic scaled run-
times, which is

(lg r(di′) − lg r(di′′))
2

. To decide the number of clusters, we do not adopt classical
methods like e.g. silhouette, Gap statistic [22, 26] because
they caused a large number (more than 20) of small clusters.
However, large number of clusters increase the complexity
level for the whole MUGM method. In our analysis we
tried several number of clusters, e.g. 2, 4, 6, 8, 10,..., 20.
However, it turned out that the final modelling quality did
not increase for more than 4 clusters. Note, that this has to
be verified if the model is applied to other workload traces.

Overall, all jobs have been partitioned into L clusters dis-
tinguished by this CLARA clustering of job runtimes and
the lg-clustering of their degree of parallelism. The next
step is the grouping of users based on their contribution to
these job clusters.

3.3 User Grouping

We can characterize the submission of user j by a feature
vector αj = (αj1, . . . , αjL), where αjl denotes the frac-
tions of user j submissions belonging to job cluster l, l ∈
[1, L]. Obviously there is

∑
l∈[1,L] αjl = 1,∀j ∈ [1, J ].

Now we can cluster all users into K groups by their fea-
ture vectors. The similarity of users is characterized by the
distance of their feature vectors. Since different users have
different number of job submissions, we weight the distance
between the feature vectors of users by their corresponding
number of job submissions. In detail, the distance d(j′, j′′)
between user j′ and j′′ is defined by

d(j′, j′′) = ||αj′ − αj′′ || · |W |
|D| ,

where W = {di|(u(di) = j′) ∨ (u(di) = j′′); i ∈ [1, n]}.
That is, we divide the number of jobs belonging to user j′

and j′′ by the number of all jobs, and then multiply the
result by the distance between both feature vectors. With
weighted distances between the feature vectors, the PAM
clustering algorithm is again applied to partition the users
into K groups. The determination of the actual number of
groups K is given in the Section 4.

3.4 Workload Modelling of Identified User
Groups

After clustering the users into several groups, we char-
acterize all jobs submitted from the users of a group us-
ing statistical methods. There are several common meth-
ods to describe the data distribution. However we found
that after the users are grouped, the characteristics of jobs
originated by each user group can not easily be described
by a single distribution. Therefore we use model-based
density estimation, that is described in more detail by Fra-
ley and Raftery [15], to model the jobs from each group.
This model-based method assumes that the data is gener-
ated by a combination of several distributions. To this end,
this method determines the required parameters for a set of
Gaussian distributions. This is done by multivariate normal-
izations with the highest aposteriori probability.

We denote the estimated combined distribution function
for a user group k as Gk. However the Gk distribution func-
tion set does not address the power of 2 effect for the paral-
lelism. Hence, we extract the amount of power of 2 jobs fk

in the original workload of a user group k. That is

fk =
|{di|(lg p(di) ∈ N) ∨ (m(u(di)) = k); i ∈ [1, n]}|

|{dj |m(u(dj)) = k; j ∈ [1, n]}| .

Additionally the fraction of submission pk from group k is
calculated by

pk =
|Dk|
D

, where Dk = {di|m(u(di)) = k; i ∈ [1, n]}. In a sum-
mary, the workload of the user group k can be represented
by Gk, fk, pk. In the next section, we will discuss our
method to generate the combined synthetic workload.

3.5 Synthetic workload generation

In order to create a synthetic workload of n jobs by the
MUGM model the following steps are applied:

1. For each user group k, we generate nk jobs with
nk = n · pk from Gk. We generate the synthetic par-
allelism and runtime by sampling from the distribution
Gk the corresponding sets Pk = {p1, . . . , pnk

} and
Rk = {r1, . . . , rnk

}. However, we also have to in-
verse our previous scaling from 3.1 and round to the
nearest integer value:

P ′
k = {p′k|p′k = �2pk + 0.5�;∀pk ∈ Pk} and



R′
k = {r′k|r′k = �2rk + 0.5�;∀rk ∈ Rk}.

2. In order to model the power of 2 effect, a fraction of
the values in P ′

k is rounded to the nearest power of 2
value. That is, with a probability of fk the simulated
value P ′

k is modified.

3. The synthetic jobs from different user groups are com-
bined. Particularly, we use probability pk to pick a job
from group k. According to this method we create the
final n jobs.

Note, that for a complete workload modelling not only
the job characteristics of parallelism and runtime need to be
modelled. In addition, a model for the job arrival process
is needed. As previously mentioned, several methods are
available for this task [21]. In future work, a more sophis-
ticated approach based on the user groups can be examined.
Such an approach can include sequence submission patterns
[24].

In the next section, we discuss the evaluation of the
MUGM method with experimental results.

4 Evaluation

To evaluate our MUGM method we used those 6 work-
loads from Standard Workload Archive as mentioned be-
fore. In order to validate our approach, some statistical
comparison will be presented.

4.1 Analysis of Job Characteristic from User
Groups

First, we examine the job characteristics of the resulting
user group clusters. Due to the limited available space, only
the results for the KTH workload are shown here. However,
the other workloads exhibited similar results. Figure 5 dis-
plays the results for different numbers of user group clusters
K = {2, 4, 6}. The user groups are ordered left-to-right
and top-to-bottom in descending order by their combined
amount of workload. This is also referred to as the Squash
Area SA, which is the total resource consumptions of all the
jobs in each group. The SAi for group i, i ∈ [1,K] is cal-
culated by:

SAi =
∑

m(u(di))=i

p(di) · r(di)

. These figures give an idea of how much the parallel com-
puter was utilized by one of the user groups.

The increase of K forces the creation of more user
groups. For example, for K = 2 there are two user groups
which exhibit the following characteristic: the first group
submits a lot of short jobs, requiring below 10 seconds; the

other group causes more sequential jobs with longer run-
time requirements. The parallelism is nearly not distin-
guished in this classification. For K = 4 more detailed
user groups are found, in which combinations of runtime
and parallelism are found. However, for K = 6 it is note-
worthy that some of the user groups cover only very few
users with a small amount of workload. That is, for some
of them SA contribution is even less than 1%. It can be de-
duced that these groups have limited impact on the overall
system behavior. However, this has to be verified in future
research work.

Nevertheless, the results indicated that the workloads
could be distinctively covered with 4 user groups. It is
worthwhile to notice that this applied to almost all of our
workloads as can be seen in Table 3. That is, there is only a
limited number of distinctive features of user behaviors on
real systems. It can be assumed that additional user cluster-
ing only yields groups with minor contribution to the work-
load. Therefore, in this paper we focused on the creation of
4 user clusters.

For the KTH modelling with 4 user groups the following
characteristics of the user groups can be seen in Figure 5:
Group 1 submits a lot of highly parallel jobs; Group 2 sub-
mits more jobs requiring relatively longer runtimes; Group
3 is quite specific in terms of runtime and parallelism and
accounts only for about 6% of all jobs but over 20% of the
total SA while only 3% users are in this group. In Group
4, users concentrate on submitting sequential jobs, requir-
ing only 1 node. The runtime is considerably long, and over
40% of all users are in this group. It indicates that quite a
lot of users use the machine primarily but infrequently for
sequential jobs.

Note, that the other workloads do not exhibit the same
group characteristics. However, as mentioned before about
4 user groups can also be identified.

4.2 Statistic comparison of synthetic and original
workloads

A common method of examining the similarity be-
tween the original and modelled workload distribution is
the Kolmogorov-Smirnov (KS) test [19]. This test looks
at the maximum difference between two distribution func-
tions. This criterion is adopted in several papers [21, 16].
The KS test results are given in Table 4. It can be seen that
the output of our MUGM method yields good results for
most workload traces. That is, the KS value is below 0.10
in all cases and at 0.05 on average.

The table also includes the correlation between the par-
allelism and the runtime for the synthetic and the original
workload. As shown in the Table the synthetic data from
our MUGM model displays the similar correlation as the
original workload.
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Figure 5. The results when 4 user groups are found with our MUGM model. The information in the
header of each diagram show the relative contributions of each user group to the squashed area SA,
the total numbers of jobs and users.

5 Conclusion

In this paper we proposed a novel method MUGM
(Mixed User Group Model) for analyzing and modelling
workload traces. The main advantage of this method is
the consideration of individual user groups. Our MUGM
method has been applied to several workloads from real in-
stallations. Here, it is interesting that the analysis of the
workloads exhibited that only a few distinct user groups ex-
ists. This applied to all examined workloads.

The presented method allows the creation of new syn-
thetic workloads modelled after the original user group
characteristics. This method can be used to evaluate new
scheduling strategies. The job submission process has now
a direct association with individual user groups. This in-
formation can be exploited for individualized quality crite-
ria considered by scheduling strategies. Furthermore, addi-
tional workload parameters can be modelled in regards to

individual scheduling objectives of these user groups. This
applies especially to the Grid scheduling scenario in which
the scheduling objective is not globally given for a specific
computing system but depends on the user preferences.

As found in [7, 8, 9] new scheduling systems can also
benefit by dynamic adaptation according to the current sys-
tem state. This enables the scheduler to dynamically adjust
its parameterizations and consequently its behavior. This
can include predictions strategies for user or groups based
on these results.

Further research is necessary to include individual mod-
elling strategies for the job arrival. Here, sequential depen-
dencies for users or groups can be considered to improve
the quality in the modelling of the temporal submission be-
havior.



Workload K User group information
2 (53.7, 80, 98.3), (46.3, 20, 1.7)
4 (46.3, 20, 1.7), (22.1, 20.4, 72.9)

SDSC96 (18.7, 40.0, 23.7), (13, 19.6, 1.7)
6 (46.3, 20.0, 1.7), (20.6, 15.8, 71.2)

(17.1, 6.6, 1.7), (13, 19.6, 1.7)
(1.6, 33.5, 22.0), (1.5, 4.6, 1.7)

2 (77.7, 57.4, 30.0), (22.3, 42.6, 70.0)
4 (75.9, 52.8, 26.7), (14.3, 24.1, 14.4)

CTC (9.0, 17.6, 30.8), (0.7, 5.5, 28.1)
6 (49.5, 42.3, 17.4), (34.5, 15.2, 25.6)

(11.1, 16.5, 10.9), (2.3, 6.8, 2.7)
(2.1, 13.7, 16.1), (0.7, 5.5, 27.4)

2 (95.6, 85.9, 55.6), (4.4, 14.1, 44.4)
4 (45.0, 40.1, 37.9), (29.2, 40.1, 16.8)

KTH (21.3, 6.7, 3.3), (4.5, 13.1, 42.1)
6 (44.2, 26.1, 32.2), (29.2, 39.7, 16.4)

(21.3, 6.7, 3.3), (3.4, 4.7, 41.6)
(1.1, 8.4, 0.5), (0.8, 14.5, 6.1)

2 (95.7, 89, 99.5), (4.3, 11, 0.5)
4 (66.3, 33.6, 22.5), (22.7, 25.7, 24.9)

LANL (6.7, 29.6, 52.1), (4.3, 11, 0.5)
6 (53.2, 31.4, 22.1), (14.8, 19.9, 24.4)

(13.1, 2.2, 0.5), (7.9, 5.9, 0.5)
(6.7, 29.6, 52.1), (4.3, 11.0, 0.5)

2 (86.7, 71.6, 42.8), (13.3, 28.4, 57.2)
4 (65.5, 53.2, 25.2), (16.1, 5.9, 3.7)

SP2 (12, 17.7, 34.1), (6.3, 23.2, 36.9)
6 (65.5, 53.2, 25.2), (16.1, 5.9, 3.7)

(11.7, 15.7, 32.2), (5.7, 5.4, 1.6)
(0.8, 2.6, 36.9), (0.2, 17.2, 0.2)

2 (99.7, 91.1, 99.0), (0.3, 8.9, 1.0)
4 (76.5, 68.6, 96.9), (23.0, 5.1, 1.0)

SDSC95 (0.3, 8.9, 1), (0.3, 17.3, 1)
6 (68.9, 55.6, 94.8), (23.0, 5.1, 1.0)

(7.5, 3.5, 1.0), (0.3, 8.9, 1.0)
(0.3, 17.3, 1.0), (0.1, 9.5, 1.0)

Table 3. The Details (SA%, # of Jobs%, # of
Users%)of User Groups Identified by MUGM
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