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Abstract

This paper discusses the influence of the partitioning of parallel resources in a computational grid on the quality of the
schedule. To this end, several machine configurations have been simulated with different parallel job workloads which
were extracted from real traces. The quality of the parallel job scheduling is measured by the average weighted response
or waiting time. The results show that, depending on the communication overhead, the use of partitioned configurations
does not necessarily lead to a performance drawback.

1 Introduction

Grid computing is expected to provide easier access to com-
putational resources that are usually limited. Distributed
computer systems are joined in a grid environment (see [2,
7]), in which users can submit jobs that are automatically
assigned to suitable resources. The idea is similar to meta-
computing [15] where the focus is limited to compute re-
sources while grid computing takes a broader approach with
for example networks, data, visualization devices etc. as ac-
cessible resources [12, 6]. The grid is intended to provide
the user with access to locally unavailable resource types.
Additionally, there is the expectation that a larger number
of resources is available. This is expected to result in a re-
duction of the average job response time. Also the utiliza-
tion of the grid computers and the job-throughput is likely
to improve due to load-balancing effects between the par-
ticipating systems.

Now, parallel computing resources are usually not exclu-
sively dedicated to grid computing. Furthermore, they are
typically not owned and maintained by the same adminis-
trative instance. Research institutes are an example for such
resource owners, as well as laboratories and universities.
Currently, there is no single large scale grid established as
a standard to which resource owners typically join their re-
sources. Moreover, grids are often created as testbeds with
a limited number of resources. In this paper we want to dis-
cuss the question what influence the number and size of
computational resources in a grid have on the quality of ser-
vice for the user. It is expected that more smaller machines
instead of less but larger machines will lead to a drawback
for a constant total number of processors. But it is for exam-
ple unknown if the existence of smaller machines in a grid
environment may decrease or increase the schedule quality.
In another scenario a company or institution may have the

alternative to establish a computer center – with the poten-
tial drawback of a performance bottle-neck or in fault-safety
– or the setup of two computers at different locations as a
grid.

Users are usually interested in a small turn-around time
for their jobs. To this end, we examine the influence of dif-
ferent grid configurations on the average waited response
time for given workload sets. The workloads are derived
from real machine traces to resemble realistic usage.

The execution of jobs in a grid environment is man-
aged by a scheduling system. This system can try to share
jobs between the different computers in a grid for load-
balancing. Here, jobs are still executed on a single machine.
It is likely that grid configurations with smaller machines
lead to lower utilization and job-throughput than configura-
tions with larger machines. Besides this scenario the usage
of multi-site applications has been theoretically discussed
for quite some time [1]. Multi-site computing is the exe-
cution of a job in parallel at different sites. This results in
a larger number of totally available resources for a single
job. The absence of a common grid computing environment
which is able to support allocating resources in parallel on
remote sites results in a very limited number of real multi-
site applications. In addition many user fear a significant
adverse effect on the computation time due to the limita-
tions in network bandwidth and latency over wide-area net-
works. This overhead depends on the communication re-
quirements between the process parts of a particular appli-
cation. As WAN networks become ever faster, this overhead
may decrease over time. For different grid configurations
the multi-site execution of jobs may limit the draw-back of
smaller machines and improve the schedule quality.

To evaluate the effect of different grid configurations, we
examine the usage of multi-site jobs in addition to job shar-
ing. To this end, discrete event simulations on the basis of



workload traces have been executed for sample configura-
tions. The potential drawback is evaluated if smaller com-
puting sites instead of larger participate in a computational
grid.

The paper is organized as follows. First, our scheduling
model is discussed in the next section. In Section 3 the sim-
ulations and their results are presented. The paper ends with
a brief conclusion.

2 Model

In this section a description of the scenario which is used
in our evaluation is given. After a specification of the un-
derlying models of sites, machines and jobs the scheduling
system is introduced.

2.1 Site Model

As mentioned before, we assume a computing grid con-
sisting of independent computing sites. The sites combine
their resources and share incoming job submissions in a grid
computing environment. Here, jobs can be executed on lo-
cal and remote machines. The computing resources are ex-
clusively committed to grid usage. That is job submissions
of all sites are redirected and distributed by a grid scheduler.
Only this scheduler controls all grid resources. For a real
world application this may be a requirement difficult to ful-
fill. However, other implementations, where site-autonomy
is still maintained, are possible.

2.2 Machine Model

We assume massive parallel processor (MPP) systems as
the computing resources. Each site has a single parallel ma-
chine that consists of several nodes. Each node has its own
processor, memory, disk etc. The nodes inside a machine are
connected via a fast interconnection network that does not
favor any communication pattern inside the machine [4].
This means a parallel job can be allocated on any subset of
nodes of a machine. This model comes reasonably close to
real systems like an IBM RS/6000 Scalable Parallel Com-
puter, a Sun Enterprise 10000 or a HPC cluster.

For simplification all nodes in this study are identical.
The machines at the different sites only differ in the number
of nodes. The existence of different resource types would
limit the number of suitable machines for a job. In a real im-
plementation such a preselection is part of grid scheduling
and normally executed before the actual scheduling process
takes place. After the preselection phase the scheduler can
ideally choose from several resources that are suitable for
the job request. In this study we neglect this preselection
process and focus on the scheduling result. Therefore, it is
assumed that all resources are of the same type and all jobs
can be executed on all nodes.

The machines support space-sharing and run the jobs in
an exclusive fashion. Moreover, the jobs are not preempted

nor time-sharing is used. Therefore, once started a job runs
until completion. Furthermore, in our study we do not con-
sider the case that a job exceeds its allocated time. Af-
ter submission a job requests a fixed number of resources
that are necessary for starting the job. This number is not
changed during the execution of the job. That is jobs are not
moldable or malleable [5, 3].

2.3 Job Model

Jobs are submitted by independent users which produces an
incoming stream of jobs over time. Therefore, the schedul-
ing problem is an online scenario without any knowledge
on future job submissions.

We restrict our simulations on batch jobs, as this job
type is dominant on most MPP systems. For interactive jobs
there are usually dedicated machine partitions where the ef-
fect of the scheduling algorithm is quite limited. In addition
interactive jobs are usually executed on local resources.

It is the task of the scheduling system to allocate the jobs
to resources and determine the starting time. Then the job
is executed without further user interaction. Data manage-
ment of any files is neglected in this study. In our grid com-
puting scenario, a job can be transmitted and executed at a
remote site without any overhead. In a real implementation
the transport of data requires additional time. This effect
can often be hidden by pre- and postfetching before and af-
ter the execution. In this case the resulting overhead is not
necessarily part of the scheduling process.

In a grid environment we assume the ability of jobs to
run in multi-site mode. That means a job can run in paral-
lel on a subset of nodes belonging to different sites. This
allows the execution of large jobs that require more nodes
than available on a single machine in the grid environment.
The impact of bandwidth and latency has to be considered
as wide-area networks are involved. The execution time
may increase depending on the communication pattern of
the job. If multi-site execution is applied, we address this
subject in our simulations by increasing the run time of the
affected job.

2.4 Scheduling System

In parallel job scheduling on single parallel machines, sim-
ple first-come-first-serve (FCFS) strategies have often been
applied. As an advantage, these algorithms provide some
kind of fairness (see [14]) and are deterministic for the
user. Nevertheless, it can result in poor quality if jobs
with large node requirements are submitted. To this end,
a strategy called backfilling has become standard on most
systems.The backfilling algorithm has been introduced by
Lifka [11]. It requires knowledge of the expected job exe-
cution time and can be applied to any greedy list schedule.
If the next job in the list cannot be started due to a lack
of available resources, backfilling tries to find another job
in the list which can use the idle resources. But it will not
postpone the execution of the next job in the list.



In our scenario for grid computing, the task of schedul-
ing is delegated to a grid scheduler. The local scheduler is
only responsible for starting the jobs after an allocation by
the grid scheduler. Note, that we use a central grid sched-
uler for our study. In a real implementation the architecture
of the grid scheduler may differ as single central instances
usually lead to drawbacks in performance, fail-safety or ac-
ceptance of resource users and owners. Nevertheless, dis-
tributed architectures can be designed that act like a central
grid scheduler.

Two scenarios have been examined in this paper: job-
sharing between computing sites in a limited grid environ-
ment, in addition with multi-site computing.

Job Sharing In the job-sharing scenario all jobs submitted
at any site are delegated to the grid scheduler. In our exam-
ination the scheduling algorithms in grid computing consist
of two steps. In the first step the machine is selected and in
the second step the allocation in time for this machine takes
place.

Machine Selection: There are several methods possible for
selecting machines. Earlier simulations (presented in [8])
showed the best results for a selection strategy called Best-
Fit. Here, the machine is chosen on which the job leaves the
least number of free resources if started.

Scheduling Algorithm: The backfilling strategy is applied
for the single machines as well. This algorithm has shown
best results in previous studies [8].

Multi-Site Computing This scenario is similar to job shar-
ing: a grid scheduler receives all submitted jobs. Addition-
ally, jobs can now be executed crossing site boundaries (see
Figure 1).
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Figure 1 Support for multi-site execution of jobs

There are several strategies possible for multi-site
scheduling. For this work we use a scheduler which first af-
ter a job submission tries to find a site that has enough free
resources for starting the job. If such a machine is not avail-
able, the scheduler tries to allocate the jobs on resources
from different sites. The number of combined sites is mini-
mized. If there are not enough available resources for a job,
it is queued and normal backfilling is applied. Note, that
this algorithm is not exactly backfilling as multi-site jobs
can surpass queued jobs at submission.

Spreading job parts over different sites usually produces
an additional overhead. This overhead is due to the commu-
nication over slow networks (e.g. a WAN). Consequently,
the overall execution time of the job will increase depend-
ing on the communication pattern. For jobs with limited
communication demand there is only a small impact. Note,
without any penalty for multi-site execution, the grid would
behave like a single large computer. In this case, multi-site
scheduling will outperform all other scheduling strategies.
Within our study we examine the effect of multi-site pro-
cessing on the schedule quality under the influence of a
communication overhead. To this end, the influence of the
overhead is modelled by extending the initial execution time
r∗i for a job i that runs on multiple sites:
r∗i = (1 + p) · ri with p = 0 .. 60 % in steps of 5%.

3 Evaluation

For the evaluation of the scheduling behavior for differ-
ent machine structures discrete event simulations were per-
formed. Several workload sets have been examined for the
algorithms mentioned earlier.

3.1 Machine Configurations

All configurations use a total of 512 resources. Those re-
sources are partitioned in the various machines as shown in
Table 1.

identifier configuration max. size sum

m64 4 · 64 + 6 · 32 + 8 · 8 64 512
m64-8 8 · 64 64 512
m128 4 · 128 128 512
m256 2 · 256 256 512
m256-5 1 · 256 + 4 · 64 256 512
m384 1 · 384 + 1 · 64 + 4 · 16 384 512
m512 1 · 512 512 512

Table 1 Resource Configurations

The configurations m64-8, m128 and m256 represent sev-
eral sites with equal machines. They are balanced as there is
an equal number of resources at each machine. They differ
in the number of machines and in the number of resources at



each machine. The configurations m384 and m256-5 are ex-
amples of a large computing center with several client sites.
In the latter configuration, the biggest machine is smaller
than the biggest machine within the configuration m384
and all other machines have an equal size in opposite to
m384. The configuration m64 is a cluster of several sites
with smaller machines.

Finally, a reference configuration m512 consists of a sin-
gle site with one large machine. In this case no grid com-
puting is used and a single scheduler can control the whole
machine without any need to split jobs.

3.2 Workload Model

At the moment no real workload is available for grid com-
puting. For our evaluation we derived a suitable workload
from real machine traces. These traces have been obtained
from the Cornell Theory Center and are based on 430 nodes
of an IBM RS6000/SP parallel computer. For more details
on the traces and the configuration see the description of
Hotovy [9]. The workload is available from the standard
workload archive [16].

In order to use these traces for the job sharing algorithm
it was necessary to modify them to simulate submissions
at independent sites with local users. To this end, the jobs
from the real traces have been assigned in a round-robin
fashion to the different sites. It is typical for many known
workloads to favor jobs requiring a power of 2 nodes. The
CTC workload shows the same characteristic. The mod-
elling of configurations with smaller machines would put
these machines into disadvantage if the number of nodes is
not a power of 2. To this end, all our configurations consist
of 512 nodes. Nevertheless, the traces consisted of enough
workload to keep a sufficient backlog on all systems (see
[8]). The backlog is the workload that is queued at any time
instance if there are not enough free resources to start the
jobs. A sufficient backlog is important as a small or even
no backlog indicates that the system is not fully utilized.
In this case there is not enough workload available to keep
the machines working. Many schedulers, e.g. the mentioned
backfilling strategy, require that enough jobs are available
for backfilling in order to utilize idle resources. This case
usually leads to a bad scheduling quality and unrealistic re-
sults.

Over all the quality of a scheduler is highly dependent
on the workload. To minimize the risk to achieve singular
effects the simulations have been done for 4 workload sets:

– A synthetic probabilistic generated workload on the ba-
sis of the CTC traces.

– 3 extracts of the original CTC traces.

The synthetic workload is very similar to the CTC data
set [10]. It has been generated to prevent singular effects
which occur in real traces in order to preserve the accuracy
of the result. Also the usage of 3 extracts of the real traces
are used to get information on the consistence of the results

for the CTC workload. Each workload set consists of 10000
jobs which corresponds in real time to a period of more than
three months.

A problem of such simulations is the handling of wide
jobs contained in the original workload traces. The widest
job in the CTC traces e.g. requests 336 processing nodes.
On one hand these jobs can be used in simulations of multi-
site. Here jobs can be split over different sites to get more
resources than available at a single site. On the other hand,
some of these jobs cannot be started in simulations of the
job sharing scenario.

To permit a valid comparison of the simulation results, no
job must be neglected. Therefore we assume that the corre-
sponding workloads of wide jobs are still generated at sin-
gle sites, but are split up into several parts with maximum
64 nodes to allow their execution on all examined configu-
rations. To allow the comparison of different scenarios for
job sharing the following modifications have been applied
to each forementioned workload.
Workload Modification:

1. Wide jobs split in parts of 64 nodes,
2. Wide jobs unchanged.

The workloads with these modification were executed in
both scenarios. Note, that all of these modifications do not
alter the overall amount of workload. The simulations allow
the examination of the impact caused by wider multi-site
jobs on the schedule.

The used workloads will be summarized in Table 2 and
an identifier introduced for each workload.

identifier description

10 20k org An extract of the original CTC traces
from job 10000 to 20000.

10 20k max64 The workload 10 20k org split into jobs
with at most 64 processors.

30 40k org An extract of the original CTC traces
from job 10000 to 40000.

30 40k max64 The workload 30 40k org split into jobs
with at most 64 processors.

60 70k org An extract of the original CTC traces
from job 60000 to 70000.

60 70k max64 The workload 60 70k org split into jobs
with at most 64 processors.

syn org The synthetically generated workload
derived from the CTC workload traces.

syn max64 The workload syn org split into jobs
with at most 64 processors.

Table 2 The used workloads



3.3 Results

The simulation results show that configurations with equal
sized machines provide significant better scheduling results
than machine configurations that are not balanced. Machine
configurations with a small number of machines produce
better scheduling results under the precondition that each
configuration has the same amount of resources in the sum.

As a measure the average weighted response time and the
average weighted wait time are used in this study. The re-
sponse time of each job is the difference between the com-
pletion time and the submission time. The response time
of each job is weighted by its resource consumption. The
average weighted response time is the sum of all weighted
response times divided by the number of all jobs. The wait
time of each job is the difference between the start time and
the submission time. The weights are defined the same way
as for the average weighted response time.

Average Response Time weighted by Width: AWRT =
∑

j∈Jobs

(j.requestedResources·(j.endTime−j.submitT ime))

∑

j∈Jobs

j.requestedResources

Average Wait Time weighted by Width: AWWT =

∑

j∈Jobs

(j.requestedResources·(j.startT ime−j.submitT ime))

∑

j∈Jobs

j.requestedResources

Note that the mentioned weights prevent any prioriti-
zation of small over wider jobs in regard to the average
weighted response and average weighted wait time if no re-
sources are left idle [13]. The average weighted response
time is a mean for the schedule quality from the user per-
spective. A shorter AWRT indicates that the users have to
wait less for the completion of their jobs. A shorter AWWT
indicates that the jobs have to wait less time before they are
started. Note that the average weighted wait time should not
be too small because this would indicate that the backlog is
very small and the jobs are calculated nearly directly after
submission.

As an example for the scheduling quality the average
weighted response time for the workload 60 70k org and
all resource configurations is given in Figure 2. The other
workloads show a similar behavior. Several parameter set-
ting for the increase of the corresponding run time for multi-
site jobs were examined. The AWRT for the machine con-
figuration m512 is constant for all parameters, due to the
fact that no multi-site scheduling is applied in this config-
uration. As it can be seen in Figure 2 the AWRT decreases
from m64-8 over m128 to m256. All of these machine con-
figurations have equal sized machines but the size of the
machines increases between the configurations. The AWRT
decreases from machine configuration m64 to m64-8, be-
cause the configuration m64-8 consists of more larger ma-
chines than m64. As more jobs are executed in multi-site

mode in configurations with a higher number of smaller ma-
chines, an increase of the communication overhead (p) has
a higher impact on the AWRT. The same effect can be ob-
served between m256 and m256-5. Here the configuration
m256-5 is not balanced and has some smaller machines,
which turns out to be a disadvantage. It can be concluded
that there is no hard rule for the advantage of equal sized nor
of biggest machines. This will highly depend on the charac-
teristic of the workload as can be seen in the comparison be-
tween m384 and m256. In this example m384 outperforms
m256 for a communication overhead up to 45%.

In Figure 3 the average weighted response time is shown
related to the average weighted response time of configura-
tion m512. This underlines the above statements more de-
tailed.

The AWRTs of the configurations m64 and m64-8 are
almost similar for values of the multi-site parameter p be-
tween 0% and 35%. If the overhead exceeds 35% the AWRT
of configuration m64 increases dramatically and is at least
25% bigger than the AWRT for configuration m64-8.

The decreasing AWRT from m64-8 to m128 to m256 can
be evaluated with at least 20% for each step for overhead
parameters over 35%. The difference of the AWRT for pa-
rameters under 35% is not significant.

The comparison between configuration m256 and m256-
5 results in a similar conclusion. The AWRT increases for
parameters over 45% with at least 25%.

The increase of the AWRT results from two effects. First
of all, the whole workload increases, because all multi-
site jobs have a longer execution time. Second, the number
of multi-site jobs increases. Table 3 shows the number of
multi-site jobs for machine configuration m128 for different
workloads and different multi-site parameters. For all work-
loads the number of multi-site jobs increases. This process
is not continuously, but the difference between the number
of multi-site jobs for p=0% and p=60% is always at least
30%.

This behavior results from the scheduling policy to
schedule all jobs as soon as possible after submission. Be-
cause of an increased execution time of all multi-site jobs
the number of free time slots within the schedule decreases
and the probability of free time slots within one machine de-
creases as well. Therefore jobs can only be started as soon
as possible if free time slots from different machines are
combined.

Table 4 indicates that the increasing number of multi-site
jobs corresponds with an increasing part of the squashed
area 1 of all multi-site jobs related to the squashed area of
the whole workload. Between parameter p=0% and p=60%
this parts increases at least 50%.

Tables 3 and 4 also indicate that jobs running in multi-site
mode are in majority bigger jobs. This can be concluded
because about 5% to 10% of all jobs are responsible for
about 20% to 40% of the whole workload depending on the

1 The squashed area is defined as:∑

j∈Jobs

(j.requestedResources · j.runT ime) .



Average Weighted Response Time for Multi-Site Scheduling and workload 60_70k_org
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Multi-Site Scheduling
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Average Weighted Response Time for different workloads and different machine configuration for

Multi-Site Scheduling and p=50%
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Figure 4 The average weighted response time in seconds for all workloads and all machine configurations for Multi-Site
Scheduling and p=50%

Average Weighted Wait Time in seconds for Multi-Site Scheduling and workload m60_70k_org
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Average Weighted Response Time in seconds for machine configuration m128 and all workloads

for Multi-Site Scheduling
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Figure 6 The average weighted response time in seconds for machine configuration m128 and all workloads for Multi-
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Comparision of the Average Weighted Response Time between all machine configurations for all
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file 10 20k org 30 40k org 60 70k org syn org
[jobs]=̂[10−2%] [jobs]=̂[10−2%] [jobs]=̂[10−2%] [jobs]=̂[10−2%]

p=0% 539 431 840 774
p=5% 543 436 850 769
p=10% 582 448 928 827
p=15% 572 490 917 906
p=20% 583 546 946 946
p=25% 601 567 951 1042
p=30% 622 521 979 1026
p=35% 637 523 1036 1063
p=40% 647 534 1106 1012
p=45% 673 597 1008 1181
p=50% 755 579 1029 1188
p=55% 748 578 1086 1233
p=60% 746 638 1114 1177

Table 3 Number of Multi-Site Jobs for different workloads and different parameters using machine configuration m128

file 10 20k org 30 40k org 60 70k org syn org

p=0% 22,19% 23,97% 34,01% 40,75%
p=5% 22,87% 25,09% 36,36% 41,21%
p=10% 24,71% 27,21% 37,28% 46,85%
p=15% 25,30% 28,24% 38,97% 47,95%
p=20% 26,05% 31,36% 40,43% 46,91%
p=25% 29,40% 31,93% 41,02% 52,81%
p=30% 29,11% 30,84% 44,53% 53,62%
p=35% 30,24% 31,01% 44,38% 54,01%
p=40% 31,21% 32,82% 48,10% 56,01%
p=45% 33,22% 37,20% 45,87% 59,77%
p=50% 37,15% 34,18% 46,25% 59,99%
p=55% 37,87% 36,05% 49,81% 62,72%
p=60% 41,46% 39,17% 52,38% 60,46%

Table 4 The Squashed Area of the Multi-Site jobs related to the Squashed Area of the whole workload for different
workloads and multi-site parameters using machine configuration m128

used job trace. This effect even increases for a higher multi-
site parameter p.

As it can be seen in Figure 3 the AWRT for the machine
configurations m128, m256 and m384 is smaller in com-
parison to m512 for the multi-site parameter p=0%. This
effect results from the scheduling algorithm for multi-site
described in 2.4. Some jobs can surpass queued jobs dur-
ing the multi-site scheduling, because the scheduler tries to
start the jobs as soon as possible or to split them. In contrast,
normal backfilling queues the job in first-come-first-serve
order.

Figure 4 shows the already mentioned behavior for dif-
ferent workloads while using multi-site scheduling with
p=50%. Therefore it is reasonable to assume that the above
explained effects apply in general.

The AWWT for simulation with the workload 60 70 org
for all used machine configurations is detailed in Figure 5.
The value of the AWWT is at least two hours. The aver-

age weighted waiting time of about two hours indicates the
existence of an appropriate backlog, which is necessary for
the backfilling algorithm.

The results presented in Figure 5 show a similar behavior
like the results in Figure 2 because the values only differ in
the execution time of the jobs.

The next aspect of this study was to identify whether all
workloads show the described behavior for each machine
configuration. The configuration m128 was chosen as an
example to demonstrate the results. All other machine con-
figuration produce similar results.

Figure 6 demonstrates the examined behavior for the
AWRT for multi-site scheduling. Depending on the multi-
site parameter p the AWRT increases for all workloads.
The actual deterioration of performance differs between the
workloads.

After the evaluation of multi-site scheduling the results
for job sharing will be presented. Jobs with limited resource
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Figure 8 The average weighted wait time in seconds for all workloads and all machine configurations for Job Sharing

demand (e.g. 50% of the largest machines) result only in a
minor drawback for configurations with smaller machines.
The increase of the average weighted response time stays
generally within 20% for all partitioned configurations ex-
cept m64 compared to a single large machine with 512
nodes. The workload syn max64 as an exception shows that
the results are highly dependent on the workload character-
istics.

In Figure 7 the AWRT for all workloads and all machine
configurations is presented. The results correspond to the
statements made for multi-site scheduling. The AWRT for
all workloads and machine configuration m64 is higher than
the AWRT for machine configuration m64-8. This indicates
that the balanced system with bigger machines is advan-
tageous to the unbalanced system with some smaller ma-
chines. The comparison between the configurations m64-8,
m128 and m256 shows that the use of bigger machines pro-
duces favorably better scheduling results. The analysis of
the scheduling behavior of m256 and m256-5 also comes to
the same results as for multi-site scheduling. The use of a
system with two big machines is preferable to the use of a
system with one big and several smaller machines. Again,
the comparison between m256 and m384 provides no clear
result.

The already mentioned conclusions for the job sharing
scenario can be seen in Figure 8 as well. Here the AWWT is
presented for all workloads and all machine configurations.
The minimal AWWT is about 45 minutes and so there is
evidence of a sufficient backlog for the backfilling strategy.

4 Conclusion
Overall, as expected the results show that configurations
with large machines are superior to configurations with
small machines. However, as long as jobs are limited in re-
source demand (e.g. 50% of the largest machines) configu-
rations with smaller machines result only in a minor draw-
back. For example, the increase for the average weighted
response time stays in general below 15% for a configura-
tion with four machines of 128 nodes compared to a single
large machine with 512 nodes. It can be expected that an
adequate ratio between the workload of large jobs and the
available computing power of the large machines is nec-
essary to guarantee an acceptable response time. As long as
this requirement is met the remaining resources may consist
of smaller machines without implying a significant draw-
back.

In contrast to job-sharing the usage of multi-site schedul-
ing allows the execution of jobs that are not limited by the
maximum machine size. As shown in this paper the re-
source configurations and the overhead due to multi site
scheduling have a strong impact on the AWRT of the sched-
ule. Configurations of larger machines are superior to those
with smaller machines. Though scenarios with small over-
heads (p < 20%) only show a slight advantage of balanced
large machine configurations compared to unbalanced sys-
tems with small machines.

Especially on smaller resource configuration a large over-
head results in a very steep increase of the AWRT, as more
jobs are executed in multi-site mode in configurations with



a higher number of smaller machines. Nevertheless, there
are some factors for the overhead that lead to a decrease
or at least no increase of the AWRT compared to smaller
factors in the same scenario. This may be caused by two
effects. First of all, the number of jobs used for multi site
scheduling increases corresponding to the size of the over-
head, while the squashed area of these jobs shows a much
lower increase than the overhead. Therefore, each job must
be smaller in average. This leads to the assumption, that
jobs used for multi site scheduling differ in each scenario
for each size of the overhead. Second, the increase of the
communication overhead leads incidentally to a more suit-
able job size as certain pattern of job execution times are
more common than others.
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