
Design and Evaluation of Multi-Objective Online Scheduling

Strategies for Parallel Machines using Computational

Intelligence

Doctorial Thesis
Carsten Franke

Genehmigte Dissertation zur
Erlangung des akademischen Grades eines Doktors an der

Fakultät für Elektrotechnik und Informationstechnik
Universität Dortmund

Abteilung Informationstechnik
Institut für Roboterforschung

15.11.2006



II

Acknowledgements

It is my pleasure to thank all the people who supported me to make this thesis possible. In
particular, I would like to express my thanks to my doctorial advisor, Prof. Dr.-Ing. Uwe
Schwiegelshohn, who supervised my research work and encouraged me every time. I also want
to thank Prof. Dr.-Ing. Hans-Paul Schwefel for his helpful support.
Further, I wish to thank all members of the Computer Engineering Institute at the University
of Dortmund for providing a pleasant and always helpful working atmosphere. I am especially
grateful to my research colleagues, Joachim Lepping, Volker Hamscher, Alexander Papaspy-
rou, Jörg Platte, Peter Resch, Lars Schley, Baiyi Song, Achim Streit, and Ramin Yahyapour
with whom I had the pleasure to work with. I am also deeply indebted to all undergraduate
students who contributed to my research work.
Finally, I would further like to thank Claudia for all her help, patience, and love.

1. Advisor: Prof. Dr.-Ing. Uwe Schwiegelshohn
2. Advisor: Prof. Dr.-Ing. Hans-Paul Schwefel

Tag der Einreichung: 31. May 2006
Tag der Prüfung: 31. October 2006

Stand vom: 15. November 2006



III

Abstract

This thesis presents a methodology for automatically generating online scheduling algorithms
for a complex objective defined by a machine provider. Such complex objective functions
are required if the providers have several simple objectives. For example, the different rela-
tionships to the various users must be incorporated during the development of appropriate
scheduling algorithms. Our research is focused on online scheduling with independent parallel
jobs, multiple identical machines and a small user community. First, Evolutionary Algorithms
are used to exemplarily create a 7-dimensional solution space of feasible schedules of a given
workload trace. Within this step no preferences between different basic objectives need to
be defined. This solution space enables the resource providers to define a complex evalua-
tion objective based on their specific preferences. Second, optimized scheduling strategies are
generated by using two different approaches. On the one hand, an adaptation of a Greedy
scheduling algorithm is applied which uses weights to create an order of jobs. These job
weights are extracted again from workload traces with the help of Evolutionary Algorithms.
On the other hand, a Fuzzy rule based scheduling system will be applied. Here, we classify a
scheduling situation which consists of many parameters like the day time, the week day, the
waiting queue length etc. Depending on this classification, a Fuzzy rule based system chooses
an appropriate sorting criterion for the waiting job queue and a suitable scheduling algorithm.
Finally, both approaches, the Greedy scheduling strategy and the Fuzzy rule based scheduling
system, are compared by using again workload traces. The achieved results demonstrate the
applicability of our approach to generate such multi-objective scheduling strategies.



IV



Contents

1 Introduction 1

I State of the Art 6

2 Scheduling Systems 7
2.1 General Framework and Notation . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Classification of Schedules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Scheduling Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Single-Objective Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Multi-Objective Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5.1 Extended Notation for Multi-Objective Scheduling Problems . . . . . 15
2.5.2 Multi-Objective Optimization . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.3 Theoretical Analysis of Multi-Objective Scheduling Systems . . . . . . 17
2.5.4 Multi-Objective Optimization Techniques . . . . . . . . . . . . . . . . 17
2.5.5 First Multi-Objective Scheduling Approaches . . . . . . . . . . . . . . 21

2.6 General Design Process of Scheduling Systems . . . . . . . . . . . . . . . . . 22
2.6.1 Scheduling Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6.2 Scheduling Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6.3 Scheduling Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Evolutionary Optimization 24
3.1 Single-Objective Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . 26

3.1.1 Different Encoding Techniques . . . . . . . . . . . . . . . . . . . . . . 27
3.1.2 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.3 Mutation of Object and Strategy Parameters . . . . . . . . . . . . . . 29
3.1.4 Recombination of Object and Strategy Parameters . . . . . . . . . . . 31
3.1.5 Adaptation of Endogenous Strategy Parameters . . . . . . . . . . . . . 33

3.2 Multi-Objective Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . 35
3.2.1 Non-Elitist Multi-Objective Evolutionary Algorithms . . . . . . . . . . 36
3.2.2 Elitist Multi-Objective Evolutionary Algorithms . . . . . . . . . . . . 38

4 Parallel Job Scheduling 43
4.1 Machine Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 System Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Scheduling Policy and Objective . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4 Scheduling Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

A



B CONTENTS

4.4.1 First Come First Serve (FCFS) . . . . . . . . . . . . . . . . . . . . . . 46
4.4.2 List Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4.3 Greedy Scheduling (Greedy) . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5.1 Workload Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.5.2 Workload Traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

II Optimizing the Scheduling of a Parallel Machine 51

5 Scaling of Workload Traces 52
5.1 Precise Scaling of Job Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2 Precise Scaling of Number and Size of Jobs . . . . . . . . . . . . . . . . . . . 55
5.3 Adjusting the Scaling Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6 Multi-Objective Scheduling Systems 61
6.1 Solution Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.1.1 Our Scheduling Objectives . . . . . . . . . . . . . . . . . . . . . . . . 62
6.1.2 Used Workload Traces . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.2 Main Development Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.2.1 Generating the Pareto Fronts for all Workloads . . . . . . . . . . . . . 63
6.2.2 Extraction of the Multi-Objective Evaluation Function . . . . . . . . . 64

6.3 Generating Appropriate Scheduling Strategies . . . . . . . . . . . . . . . . . . 65
6.3.1 Development of a Greedy Scheduling Strategy . . . . . . . . . . . . . . 66
6.3.2 Development of Rule Based Scheduling Systems . . . . . . . . . . . . 66

7 Generation of the Pareto Front 68
7.1 Exploring the Scheduling Solution Space . . . . . . . . . . . . . . . . . . . . . 68
7.2 Modifying the Sequence of Jobs in the Traces . . . . . . . . . . . . . . . . . . 70

7.2.1 Mutation Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.2.2 Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.3 Modifying the Job Sequence within the Waiting Queue . . . . . . . . . . . . . 75
7.3.1 Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.3.2 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.3.3 Achieved Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.4 Final Pareto Front . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8 Complex Evaluation Function 80
8.1 Generation of a Representative Pareto Front . . . . . . . . . . . . . . . . . . . 81

8.1.1 Interpolation of a Single Pareto Front . . . . . . . . . . . . . . . . . . 81
8.1.2 Distance between Two Pareto Fronts . . . . . . . . . . . . . . . . . . . 83
8.1.3 Transformation of Pareto Fronts . . . . . . . . . . . . . . . . . . . . . 84
8.1.4 Parameter Optimization using Evolution Strategies . . . . . . . . . . . 85
8.1.5 Transformation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 86
8.1.6 Pareto Front Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.1.7 Results of the Transformation of the Reduced Pareto Fronts . . . . . . 89

8.2 Generation of a Provider Preferences Function . . . . . . . . . . . . . . . . . 90



CONTENTS C

8.2.1 Region Based Specification . . . . . . . . . . . . . . . . . . . . . . . . 91
8.2.2 Linear Objective Functions . . . . . . . . . . . . . . . . . . . . . . . . 94

9 Scheduling Systems 97
9.1 Adaptation of a Greedy Scheduling Strategy . . . . . . . . . . . . . . . . . . . 98

9.1.1 Parameter Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 98
9.2 Rule Based Scheduling Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 99

9.2.1 Scheduling Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
9.2.2 Detailed Rule Based Scheduling Concept . . . . . . . . . . . . . . . . 101
9.2.3 Rigid Rule Based Scheduling Systems . . . . . . . . . . . . . . . . . . 102
9.2.4 Scheduling Strategies based on Genetic Fuzzy Systems . . . . . . . . . 106

10 Evaluation 124
10.1 Greedy Scheduling Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
10.2 Rigid Rule Based Scheduling Systems . . . . . . . . . . . . . . . . . . . . . . 128
10.3 Scheduling Strategies based on Genetic Fuzzy Systems . . . . . . . . . . . . . 130
10.4 Comparison of all Scheduling Strategies . . . . . . . . . . . . . . . . . . . . . 132

III Grid Scheduling 136

11 Grid Scheduling 137
11.1 Introduction to Computational Grids . . . . . . . . . . . . . . . . . . . . . . . 138
11.2 Problem Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
11.3 Evaluation of Load-Sharing in Grids . . . . . . . . . . . . . . . . . . . . . . . 142

11.3.1 Machine Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . 144
11.3.2 Workload Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
11.3.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

11.4 Market-Oriented Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
11.4.1 Market Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
11.4.2 Economic Scheduling Model . . . . . . . . . . . . . . . . . . . . . . . . 152
11.4.3 Economic Scheduling Algorithm . . . . . . . . . . . . . . . . . . . . . 154
11.4.4 Co-Allocation (Multi-Site Scheduling) . . . . . . . . . . . . . . . . . . 158
11.4.5 Request and Offer Description . . . . . . . . . . . . . . . . . . . . . . 158
11.4.6 Simulation and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 159

12 Conclusion 164

Bibliography 167

A Scaling of Workload Traces - Detailed Results 180

B Complete CTC Pareto Front 183

C Pareto Front After Transformation 187

D Reduced Pareto Front CTC 191

E Reduced Pareto Front After Transformation 195



D CONTENTS

F Results for the Standard Scheduling Strategies 199

G Best Solutions within the Pareto Fronts of All Workloads 200

H Results for Adapting a Greedy Strategy 201
H.1 Greedy Strategy CTC Optimized . . . . . . . . . . . . . . . . . . . . . . . . . 201
H.2 Greedy Strategy Optimized for all Workloads . . . . . . . . . . . . . . . . . . 203

I Results for the Iterative Approach 204
I.1 Iterative Approach Individual Optimization . . . . . . . . . . . . . . . . . . . 204
I.2 Iterative Approach CTC Optimized . . . . . . . . . . . . . . . . . . . . . . . 205
I.3 Iterative Approach Optimized for all Workloads . . . . . . . . . . . . . . . . . 206

J Results for the Probability based Approach 207
J.1 Probability based Approach Individual Optimization . . . . . . . . . . . . . . 207
J.2 Probability based Approach CTC Optimized . . . . . . . . . . . . . . . . . . 208
J.3 Probability based Approach Optimized for all Workloads . . . . . . . . . . . 209

K Results for the Michigan Approach 210
K.1 Michigan Approach Individual Optimization . . . . . . . . . . . . . . . . . . . 210
K.2 Michigan Approach CTC Optimized . . . . . . . . . . . . . . . . . . . . . . . 211
K.3 Michigan Approach Optimized for all Workloads . . . . . . . . . . . . . . . . 212

L Results for the Pittsburgh Approach 213
L.1 Pittsburgh Approach Individual Optimization . . . . . . . . . . . . . . . . . . 213
L.2 Pittsburgh Approach CTC Optimized . . . . . . . . . . . . . . . . . . . . . . 214
L.3 Pittsburgh Approach Optimized for all Workloads . . . . . . . . . . . . . . . 215
L.4 Pittsburgh Approach Modified Fitness . . . . . . . . . . . . . . . . . . . . . . 216
L.5 Pittsburgh Approach Modified Selection . . . . . . . . . . . . . . . . . . . . . 216

M Results for the CCA Approach 218
M.1 CCA Approach Individual Optimization . . . . . . . . . . . . . . . . . . . . . 218
M.2 CCA Approach CTC Optimized . . . . . . . . . . . . . . . . . . . . . . . . . 219
M.3 CCA Approach Optimized for all Workloads . . . . . . . . . . . . . . . . . . . 220



Chapter 1

Introduction

Scheduling is the task of assigning rare machines over time to given problems or tasks that are
often called jobs. The generation of a flight schedule by allocating airplanes and airplane crews
to flight connections with a specific flight time is one example of such scheduling problems, see
Vance et al. [158, 159]. However, the number of application fields where scheduling is important
to increase the system performance is very wide. This ranges from parallel computers, Grid
Computing, logistics, telecommunications, and production processes to mobil devices.
Both the jobs and the machines may have special properties. For example, jobs can require
specific processing times and machines may have a limited capacity. A schedule is called valid
if during the assignment of the available machines to the existing jobs all job and machine
properties as well as additional constraints are satisfied. Such constraints may be of various
types and may apply to jobs and to machines. Examples for the above mentioned flight
scheduling problem are the rest times for the airplane crews or the technical service intervals
for the airplanes. Properties are always related to single jobs or machines and can be verified
individually, while constraints always describe dependencies between several jobs or machines
within the resulting schedule. Therefore, the verification of constraints is more complex than
the examination of properties. However, the constraints in most real life scenarios can be
verified easily as the dependencies between jobs and resources are usually not too complex.
The scheduling problem is the selection of the best schedule of all valid schedules. To this
end, an objective function is needed to compare different possible schedules. Many problems
that are discussed in the literature only use simple scalar evaluation objectives to determine
the quality of schedules. Such simple objectives are, for example, the makespan [66], which is
defined as the latest completion time of a fixed job set, or the sum of the weighted comple-
tion [89] or response times [163] of all jobs.
However, in many real life scenarios, the machine providers would like to optimize more than
one objective. For example, they do not want to process all jobs in the same way as those jobs
compete for the available machines. Some of the jobs might be more important than others
as the corresponding users or user groups have special relationships to the machine providers.
Furthermore, the machine providers often want to distinguish between different kinds of jobs
depending on their resource demand [116].
The general problem that we address in this work is depicted in Figure 1.1. Here, different
users or customers with varying goals are submitting jobs to a system over time. The sequence
of those jobs forms the overall user demand. The scheduling system is responsible to assign
this demand to the available machines. During this process, the scheduling strategy needs

1



2 CHAPTER 1. INTRODUCTION

to resolve conflicts between competing jobs. The overall assignment generates the resulting
schedule.

Simple Monotone
Evaluation Objective

Simple Monotone
Evaluation Objective

UsersUsers

DemandDemand

Online
Scheduling-
Algorithm

Online
Scheduling-
Algorithm

ScheduleScheduleScheduleSchedule

Machine
Provider
Machine
Provider
Machine
ProviderWeightingWeightingWeightingWeighting

Evaluation
Function

Evaluation
Function

JobsJobsJobsJobs

Optimization
with CI Methods

Optimization
with CI Methods

Determination
with CI Methods
Determination

with CI Methods

External

Influences

External

Influences

External

Influences

External

Influences

External

Influences

Figure 1.1: Basic problem description. The two thick arrows specify the input for the opti-
mization of the online scheduling algorithm. The solid lines specify the online scheduling case.
The dashed lines explain the dependencies in the real environment and during the algorithm
development. The two dotted lines represent the long term feedback on the users.

The scheduling system for the assignment of machines to jobs can be implemented by the ma-
chine providers. However, the providers in most cases are not able to develop new scheduling
systems themselves. Hence, they only choose between several existing scheduling algorithms
and customize them. The resulting strategies often do not fit to the local machines. Therefore,
this thesis presents a methodology to automatically generate appropriate scheduling strate-
gies that fit to the local demand. The machine providers are aware of the user demand and
the resulting schedule. In the single optimization case, the resulting schedule is only evaluated
using a simple monotone evaluation objective, like the sum of the weighted response times.
However, as described above, the machine providers would like to use more complex objective
functions. These functions should be generated by weighing the underlying simple evaluation
objectives. However, the weighing is not trivial as the providers are normally not aware of
the set of possible schedules and the relation to the schedules that can be achieved by using
standard scheduling strategies. Therefore, the machine administrators cannot provide such
a combined objective function. Thus, our methodology first generates the Pareto front of
possible schedules with multi-objective Evolutionary Algorithms, see Section 3.2. This allows
the definition of more complex objective functions by specifying preferred regions within the
resulting Pareto front and generating corresponding objective functions. Finally, the machine
providers need a method that generates scheduling strategies based on the individual objec-
tives. To this end, single-objective Evolutionary Algorithms are used to parameterize existing
scheduling strategies. The user demand and the specified complex objective function are used
during this optimization procedure.
Figure 1.1 further includes external influences and feedback of the various users resulting from
the last scheduling decisions. Both items highly influence the long term user satisfaction. Es-
pecially the feedback is of high importance and might result in a changed user behavior for
following job submissions. However, the feedback as well as external influences, e.g. power
failures of the parallel computers or certain holidays, are neglected in our work. These influ-
ences highly depend on the local environment. Therefore, it is difficult to deduce and model
such influences.



3

The presented research exemplarily focuses on scheduling in two application areas. First, the
design and development of scheduling strategies for high performance parallel computers will
be presented. This is the main part of this thesis where all concepts will be demonstrated.
Second, the scheduling within Computational Grids will be discussed and evaluated.
High performance parallel computers are still becoming significantly faster. The speed of the
processors and the interconnection network is increasing. Nevertheless, the computing power
is still a limited resource. This is caused by many new applications that can be computed on
nowadays computers and on the growing execution time of existing programs as the input data
size and complexity increase. Therefore, the management and scheduling of such machines is
important for the users and providers as such machines are rare and expensive. The growing
network infrastructure world-wide enables the users to freely choose between existing high
performance computers. This results in a changed user behavior on local machines. Therefore,
the local scheduling must be adapted in order to avoid the migration of local users, as this
would normally reduce the profit of the local machine provider. To this end, new scheduling
strategies have to be developed that are able to include the user demand and the machine
provider objectives.
The example of high performance parallel computers fits to the general problem structure.
In this case, single processor nodes represent the machines that can be used to calculate
computational tasks (jobs) of certain users individually. Each job is characterized by the degree
of parallelism, the execution time and further criteria, see Feitelson and Nitzberg [56]. Several
high performance computer centers provide job traces from the past that include detailed
information about the type and structure of the executed computational tasks. Those so
called workloads are available in the Standard Workload Format [54], described by Chapin et
al. [20]. Hence, such data are used during the development of appropriate scheduling strategies.
The scheduling of high performance parallel computers is an online problem as the precise
execution times of all jobs are not known in advance. Furthermore, information about future
jobs is not available [73]. Schedules must be rearranged frequently. The different users or
their computational agents use the resulting scheduling information given by the system to
decide where to execute the individual jobs [17]. Additionally, the number of available nodes
within such high performance computers is usually high. As the generation of new schedules
is initiated frequently, the corresponding processing time is short. Accordingly, iterative or
quasi-offline scheduling methods cannot be used in this scenario. Thus, online scheduling
strategies with a short processing time must be developed that work well in most of the cases.
Because of the limited processing time, existing online scheduling systems at real installa-
tions mainly use a Greedy scheduling [70] in combination with First Come First Serve [157]
methods and Backfilling [99, 68]. Those methods produce a very low utilization in the worst
case [138], but work well and fast in practice [59]. Other scheduling strategies with an often
higher execution time are not well established at real installations. For example, a rule based
scheduling system could work well for high performance parallel computers, but is not used in
practice. In the last years, market oriented scheduling approaches have been published [18].
Those methods use very flexible evaluation objectives and are able to adapt to variations of
the input stream. However, existing research projects are limited to two simple linear objective
functions [17].
The scheduling strategies used at real installations, as the First Come First Serve mentioned
above, do not provide prioritizations of single jobs or job groups. Therefore, such systems
are not able to optimize schedules according to any evaluation function. The prioritization of
certain user groups at real installations is implemented by quotas [154] or by partitioning [55]



4 CHAPTER 1. INTRODUCTION

the existing parallel computers. A partition can then exclusively be assigned to such a user
group [82]. This normally reduces the average utilization of the corresponding machine, see
Feitelson [55].
The second application presented in this document is the scheduling of Computational Grids.
Within such a Computational Grid many high performance computers are connected via a
high performance interconnection network [62]. The participating computing sites are often
geographically distributed. In comparison to a single parallel computer the Grid enables the
users to execute jobs that cannot be processed locally. At the same time the location of the
executing machines is in some sense hidden from the users. Furthermore, more complex tasks
can be calculated by combining several machines from different parallel computers at the
same time. The various high performance computers within such a Grid are still owned and
maintained by different providers. Thus, each of these providers might have an individual
scheduling policy and, correspondingly, a different scheduling objective. Therefore, the Grid
scheduling tasks must cooperate with the different local scheduling strategies. For this reason,
the Grid scheduling task is focused on the discovery of possible machines and on the distribu-
tion of the computational jobs to those machines. Both problems are complex as the machines
in a Grid are heterogeneous and jobs may prefer certain types of machines. Furthermore, the
commercial relationships between the participating users and machine providers are complex
and not known to the Grid scheduling strategy. Additionally, the usage of certain machines
might be limited to a smaller user group. The overall scheduling strategy is therefore based on
heuristics and can be divided into three main steps. First, appropriate machines are located.
Second, the job preferences are combined with the machine information in order to extract
the best combination. Finally, the job is started on the selected machines. The presented Grid
scheduling strategies differ in the way they explore the available machines. Furthermore, the
different strategies use different procedures to select the machines that have to execute the
individual jobs. During our Grid scheduling development, we assume that the local scheduling
strategies do not vary. The scheduling strategies that are developed during the first part of
this document represent possible local scheduling strategies within the Grid scenario.

Document Structure

This document is divided into three parts with 12 chapters. The first part presents the state
of the art in the areas of scheduling, Evolutionary optimization, and parallel job schedul-
ing. The second part presents the main part of this thesis and details the development of
multi-objective online scheduling strategies for parallel machines. The last part presents our
scheduling approaches within the Grid context.
Chapter 2 introduces the single and multi-objective scheduling in detail. Moreover, this chap-
ter provides an overview of all existing multi-objective approaches known to the author that
use more than 2 objectives. Chapter 3 introduces the concept of Evolutionary optimization
that is applied in the later chapters of this thesis. Especially Evolution Strategies are de-
scribed in more detail. Additionally, the used multi-objective Evolutionary Algorithms are
introduced. The first part of this work ends with the state of the art overview of scheduling
parallel computers in Chapter 4.
The second part of this thesis first introduces a method to scale workload traces from real ex-
isting machines in Chapter 5. Those scaled traces are then used to develop our multi-objective
scheduling strategies. Chapter 6 describes our methodology to automatically generate schedul-



5

ing strategies for parallel machines in detail. This is followed by Chapter 7 that includes our
approach to generate the set of possible schedules based on several simple scheduling objec-
tives. In Chapter 8, we describe our approach to individually extract the machine provider’s
complex scheduling objective. Furthermore, we exemplarily choose such a complex objective
without the loss of generality in order to demonstrate the strength of our approach within
the following scheduling strategy development. Chapter 9 presents six different approaches to
develop scheduling strategies that optimize the complex scheduling objective of the machine
providers. The achieved quality of all six strategies is evaluated in Chapter 10.
The third part consists of Chapter 11 where we detail all of our Grid scheduling approaches.
This document ends in Chapter 12 with a brief conclusion and an outlook of possible exten-
sions in future works.



Part I

State of the Art

6



Chapter 2

Scheduling Systems

In this chapter, we focus on scheduling problems in general and possible solution methods.
This serves as the necessary background for the development of the advanced scheduling
strategies for parallel computers later in this work. Scheduling is the decision process of
assigning one or several machines to jobs over time. A scheduling problem only occurs if several
jobs are competing for the available machines at the same time. Here, the scheduling system
needs to select the best schedule of all valid schedules. The selection of the best schedule uses
an objective function that ranks all generated schedules. This objective function is normally
defined by the machine provider or administrator. Since often heuristics are applied, the
process of generating the final schedule does not necessarily result in the optimal schedule.
The scheduling system does not affect the results of the individual jobs but significantly
influences the efficiency of the whole system. Note that the efficiency is reflected by the
provider defined objective function and does not necessarily correspond with a high system
utilization. From the provider’s perspective, the increase in efficiency can be compared with
having more machines to process the available jobs.
Scheduling problems occur in a wide area of applications, as mentioned in Chapter 1, and
have been studied for a long time. As existing scheduling systems from different areas often
have similarities in terms of the problem structure and constraints, a common framework
and notation can typically be created to describe those scheduling problems. Based on this
common problem description the complexity and corresponding algorithms can be described
easily.
In the following section, the framework and notation for scheduling problems will be intro-
duced. Afterwards, the schedules are classified followed by a brief overview of the complexity
of scheduling problems. Next, single and multi-objective scheduling problems and related so-
lution strategies are introduced. This chapter ends with a brief description of the design of a
scheduling system.

2.1 General Framework and Notation

In many application fields different scheduling systems have been established. All those sys-
tems have common characteristics, dependencies, constraints, and objectives. Therefore, those
different application systems could be described with an equal notation. Based on such a
notation the complexity of scheduling systems can be analyzed and if necessary, e.g. for NP-
complete problems, heuristics can be conceived.

7



8 CHAPTER 2. SCHEDULING SYSTEMS

Graham et al. proposed in 1979 a general notation for scheduling problems [70]. This notation
was later refined and extended by Blazewicz et al. [13]. In the following, this notation is briefly
introduced. However, here we only present often used elements. For a more comprehensive
introduction see Pinedo [123] or T’kind et al. [156].
A scheduling system consists of n jobs and m machines. A job represents a real task from a real
world problem. Any possible form of resource where the task or problem is processed is called
machine. Within this document the terms resource and machine will be used interchangeably.
A job is normally denoted by j and a certain machine by i. The set of all jobs is τ . The
processing time of job j on machine i is described by pij . If the processing time of a job is
independent of the machine, the notation can be reduced to pj . If the precise processing time
of job j is not known before the job has been completed, the users often need to provide an
estimation p̄j . The release date of job j is given by rj . If a system uses weights to specify
priorities of jobs, the weight of job j is noted as wj . Within this document, we always assume
that a single job only consists of a single operation where one or several machines are used
at the same time. Such jobs are called mono-operational, see T’kind et. al. [156]. A job that
would consist of several operations can be modeled by a sequence of jobs with corresponding
precedence constraints. The original notation by Graham et. al. used mj to denote the number
of operations in a job shop model (they did not refer to parallel jobs). The notation introduced
by Drozdowski instead used sizej to denote the number of machines needed for execution of
a parallel job [36]. However, here mj will be used to specify that job j needs mj machines in
parallel, as introduced by Feitelson et. al. [112]. The completion time of job j is denoted by
Cj .
The general notation is decomposed into three fields: α|β|γ. The α-field describes the ma-
chine environment of the scheduling system. β includes a set of constraints between jobs and
machines within the system. The last element γ describes the objective function. Note that
in many applications the term criterion is used instead of objective. However, in the context
of scheduling systems the term objective is more common. Within this thesis both terms will
be used interchangeably.
Possible values within the α field are, for example, 1 for a single machine, Pm for m parallel
identical machines, Qm for m parallel machines with different speeds and Rm for m unrelated
parallel machines. The notation can also describe flow shops (Fm,FFc), job shops (Jm,FJc),
open jobs (Om), and other scenarios. Furthermore, in this work we assume renewable machines
as defined by T’kindt et. al. [156]. In contrast to consumable machines, renewable machines
become available again after use.
The β field includes a set of possible constraints. In the original publication by Graham et.
al. [70] only 6 possible entries were defined. This was extended in later works, for example by
Blazewicz et. al. [13]. Lists of possible constraints that are frequently found in the literature
have been collected by Pinedo [123] and T’kind et. al. [156]. Here, just some basic constraints
will be presented. The term pj describes that the processing time of job j on all machines is
identical. p̄j specifies that only an estimate for the processing time of job j is given. With
mj we describe that job j needs m machines in parallel. If in the β-field parallel identical
machines are specified (Pm), the term Mj describes that job j can only be computed on
a subset Mj of all machines m. Distinct release dates of jobs are specified with rj . Within
this work, by r̄j we denote that jobs have individual release dates that are not known in
advance. In many applications, jobs have a due date dj to finish. If this is a strict deadline,
it is denoted by d̄j . Especially in theoretical publications, scheduling problems are often
distinguished into problems with or without preemption (prmp). If preemption is allowed,



2.2. CLASSIFICATION OF SCHEDULES 9

jobs can be interrupted and the execution is resumed later on. In the context of parallel
computing this is further divided, as a local preemption specifies that a job can locally be
preempted but must be started on the same machine later. So, the job is not allowed to be
migrated to other machines in opposite to a migratable preemption. Another important aspect
of many scheduling problems are precedence constraints, denoted by prec. If such constraints
exist, certain jobs are only allowed to be started if all predecessors finished their processing.
The last aspects that will be mentioned here, in order to specify scheduling constraints, are
machine breakdowns (brkdwn). Machine breakdowns imply that certain machines are not
continuously available. However, often it is assumed that those times are known in advance.
The last part of the general notation scheme γ describes the objective of the scheduling
problem. This objective is often defined by the machine provider or administrator. Most real
scheduling systems and also the majority of the publications are using only a simple singular
objective. Examples are the well-known makespan Cmax, which is the completion time of the
last job to finish from a fixed set of jobs or the total weighted completion time (

∑
wj ·Cj). A

more comprehensive list of such objective functions can be found in the book by Pinedo [123].
For most of the scheduling problems it is important to have a regular objective function.
Regular objective functions are nondecreasing in the completion times of the executed jobs.
Scheduling problems are often divided into online and offline problems. The generation of
offline schedules uses all information about all job and machine characteristics as well as
all constraints that are all known from the beginning. In opposite, online problems deal
with uncertainty. Here, the release dates of jobs are not known in advance (r̄j) and the
precise processing time is unknown until the job has been completed (p̄j). Online systems
are further divided into online clairvoyant and online non-clairvoyant scheduling problems,
see, for instance, Motwani et. al. [110]. Within clairvoyant online problems only the release
dates of jobs are unknown whereas in non-clairvoyant systems the precise processing times
are unknown as well.
Following this introduction of the fundamental notation, possible schedules are classified. This
classification is used to describe further constraints of the applied scheduling algorithms.

2.2 Classification of Schedules

A schedule S ∈ S represents the final allocation of resources to jobs over time. In the following,
we assume that all schedules S ∈ S are feasible schedules, that is, all constraints are satisfied.
Feasible schedules can be classified as follows.
The first class represents the so called nondelay schedules. A schedule is called nondelay
schedule if and only if no machines are kept idle while a job is waiting to be processed that
could run on these idle machines.
The second class defines active schedules, where a schedule S1 ∈ S is an active schedule if
and only if @S2 ∈ S such that Cj(S2) ≤ Cj(S1), ∀j ∈ τ , with at least one strict inequality.
The class of semi-active schedules as defined in the following builds the third class. Let S1 ∈ S
be a feasible schedule and S∗ be the set of schedules having the same sequence of jobs on
the machines as schedule S1. S1 belongs to the class of semi-active schedules if and only if
@S2 ∈ S∗ such that Cj(S2) < Cj(S1), for at least one j ∈ τ .
In most of the practical applications nondelay schedules are generated. However, those sched-
ules are not necessarily optimal to the given scheduling objective.



10 CHAPTER 2. SCHEDULING SYSTEMS

2.3 Scheduling Complexity

All scheduling problems are special optimization problems. Therefore, the analysis of the
individual complexity gives a clear indication for algorithms that should be used to generate
the corresponding solutions. Within this context the complexity of the problem is identical
with the time complexity of the scheduling algorithm. This complexity is established by
calculating the number of operations that the algorithm needs in the worst case to solve the
problem. The number of operations may depend on the size of the input, denoted as Length,
and possibly on the magnitude or representation of the largest element, noted as Maximum
Value.
The classification of the complexity of algorithms is well established, see, for instance, Garey
and Johnson [67]. Problems are assigned to the classes P or NP. Informally, P includes all
problems where an algorithm can be constructed in such a way that the number of opera-
tions depends polynomially on the Length of the input. The class NP consists of all problems
where a given solution can be verified in polynomial time. Thus, the class NP includes the
class P. However, the class of NP-complete represents the ”harder” problems within NP.
Those problems cannot be solved using a polynomial algorithm assuming that P 6=NP. More-
over, NP-complete problems are further divided into problems that are NP-complete in the
ordinary sense and problems of the class NP-complete in the strong sense. NP-complete in
the ordinary sense specifies that an algorithm exists that can solve the problem in polyno-
mial time depending on the Length and the Maximum Value of the problem. Such algorithms
are called pseudo-polynomial. The class of NP-complete in the strong sense problems repre-
sents the ”hardest” problems within NP. Those problems have a so called exponential time
complexity.
If practical problems belong to the class P, it is reasonable to search for algorithms that solve
those problems in polynomial time. Contrary, if the real problem belongs to NP-complete, two
different types of algorithms can be generated. The first approach generates an approximation
algorithm that produces a solution in polynomial time. This solution should be as close as
possible to the optimum. This attempt of using heuristics is used most often in practice. If
the problem belongs to the class NP-complete in the ordinary sense it might be reasonable
for smaller problems to use a pseudo-polynomial algorithm to achieve the optimal solution.
However, the usability of a pseudo-polynomial time algorithm highly depends on the given
application. In the second approach, an algorithm can be proposed that solves the problem
optimally but needs exponential time in the worst case. The application of this second ap-
proach is input dependent. Thus, such concepts are only applied if the worst case occurs very
rarely or the problem size is limited and the computational time still acceptable.
In theory of scheduling problems often either the proof of NP-completeness, for instance,
in Du and Leung [37], is given or approximation algorithms are developed (e.g. Shmoys et
al. [142]). The approximation quality of certain algorithms for offline scheduling problems is
often described by approximation factors. Those factors represent provable bounds for the
performance of the algorithms regarding the chosen objective. To this end, the quality of
the produced schedule by the heuristic is compared with the optimal schedule quality, see
Johnson [87].
The evaluation of online scheduling algorithms is a special case of this general problem. In
the online scenario, some characteristics or some constraints or the whole set of jobs are not
known at the point in time when a new schedule must be determined. Such online scheduling
algorithms are often analyzed by using competitive ratios. To this end, the results of the online



2.4. SINGLE-OBJECTIVE SCHEDULING 11

generated schedule are compared with the optimal, offline generated schedule that was built
using all information of the underlying problem. As the optimal solution for NP-complete
problems is not precisely achievable in polynomial time, often lower bounds for the optimum
are calculated, see e.g. Shmoys et al. [143]. The theoretical analysis of scheduling problems is
in general based on the worst case behavior. However, such worst case scenarios occur very
rarely in practical situations, see, for instance, Krallmann et al. [94]. Therefore, algorithms
with the best known approximation factor do not necessarily work well in practice. Moreover,
heuristics that are based on the typical cases are often preferred.
For known scheduling problems a complexity hierarchy has been developed, see, for instance,
Graham et al. [70]. This structure can be used to determine the complexity of new scheduling
problems, if the complexity of a connected problem is already known and included in this
hierarchy. Such lists of well known scheduling problems with a single objective have been
collected by e.g. Pinedo [123, p. 544f] or T’kindt et al. [156, p. 42]. Note that even some
offline problems with a simple objective are NP-complete in the strong sense, see Garey and
Johnson [67]. Bruno et al. [16] have shown that even some very simple scheduling problems
are NP-complete.
Many real life scheduling problems are often more difficult than the scheduling problems for
which the NP-completeness has been proven. Therefore, the development and the analysis
of scheduling algorithms for practical problems can often only be done by using heuristics.
Here, the mathematical analysis of bounds in most of the cases is too complex. The problems
of online scheduling of real parallel computers and Computational Grids are such complex
problems. Therefore, the development of appropriate scheduling algorithms is typically based
on heuristics.
Before we describe the development of such scheduling algorithms for real problems, we
present some methods to solve single objective scheduling problems. These methods will then
be extended to handle multiple objectives.

2.4 Single-Objective Scheduling

The previous section has already introduced the complexity of scheduling problems, as they
are mostly NP-complete. Therefore, we will not discuss the complexity in more detail here.
Within this section, we briefly present the major algorithmic approaches that are used for
most of the practical problems. Note that the scheduling algorithms that are nowadays applied
to schedule parallel computers will be presented in Chapter 4.
The generation of feasible schedules for real life problems can be done in various ways. Here,
the research is focused on the development of heuristics that generate high quality schedules
in a reasonable amount of computational time. Hence, the choice of a heuristic to generate a
schedule highly depends on the given time constraints of the underlying problem. For some
problems, the task of creating a schedule is not time critical and all jobs, machines and
constraints are well known. In such scenarios, offline scheduling algorithms can be applied.
The scheduling task in other scenarios is time critical as the schedule needs to be generated
regularly within short time intervals. Here, the development is more focused on algorithms
that generate acceptable schedules in most cases within limited time.
The schedule generation processes can be divided into three main types. The monolithic type
solves the problem directly by using all information together. The constructive type starts
without a schedule and gradually constructs a schedule by adding one job at a time. The



12 CHAPTER 2. SCHEDULING SYSTEMS

improvement type of algorithm uses an arbitrarily generated complete schedule and tries to
find a better schedule by manipulating the current schedule. All three types are applied for
solving practical problems.
One general monolithic approach is the application of linear programming, see, for instance,
Nemhauser [114]. If the problem can precisely be described by linear equations without integer
values, the approach of linear programming often is the best choice. Here, the result repre-
sents the optimal solution. If the system description includes integer restrictions, methods of
integer or mixed-integer linear programming can be used. However, assuming that P 6=NP,
those problems are much harder to solve than linear programs, as those problems have an
exponential worst case behavior. Here, branch and bound methods are often applied. Note
that the problem size in the number of jobs, machines and constraints has to be limited if
mixed integer linear programming is used.
If the problem cannot be described as a system of linear equations or the problem size is
too large, other approaches are applied. If the problem belongs to the class of polynomially
solvable problems, a constructive algorithm should be developed. If the problem does not
belong to this class, other approaches need to be implemented. Pinedo claims: ”Enumerative
branch and bound methods are currently the most widely used methods for obtaining optimal
solutions to NP-hard scheduling problems.”, see [123, p. 342]. However, as the enumeration of
all possible schedules is impractical for many real applications, heuristics have to be applied
to obtain acceptable scheduling solutions. Here, branch and bound methods are not adequate
because of their lack of scalability. Furthermore, Hart et al. [77] claim: ”Optimal Schedules
are seldom required in an industrial environment, rather something that is resilent to the
inevitable environment changes that occur”.
Some of the most commonly used heuristics for solving real complex problems are Fil-
tered beam search [119], Tabu-search [115], Simulated annealing [1], and Evolutionary Al-
gorithms [77, 5]. All these approaches will be introduced briefly in the remainder of this
section.
Filtered beam search is a constructive approach. Here, the main goal is to limit the search of the
normal branch and bound method. To this end, the elimination process of using lower bounds
is extended as at any time only a limited number of most promising nodes is investigated. All
other nodes are discarded permanently. The number of retained nodes is called the beam width
of the search. The selection of the most promising nodes at each level is the most difficult
task. A detailed analysis of each node would lead to a good solution but may consume much
time whereas a coarse selection is quick but might result in a bad solution. Here, the filter is
used as the results are predicted for all available nodes and only for the best nodes a detailed
analysis is computed. All other nodes are already permanently discarded. The number of
nodes selected for a detailed analysis is called the filter width. This procedure can be adapted
for various applications as the beam and filter width can be set individually.
Simulated annealing and Tabu-search are examples for improvement types of algorithms. Both
approaches start with a valid schedule that could, for example, be generated by random. Then
the algorithms try to find better schedules in the neighborhood. Two schedules are neighbors if
one can be obtained through a well-defined modification of the other, see Pinedo [123]. Within
each iteration of such algorithms, new schedules in the neighborhood are evaluated and either
accepted or rejected as candidate solutions. Within the Simulated annealing algorithm the
probability to move to a schedule in the neighborhood that has a poorer objective value than
the actual schedule is decreasing during the algorithm’s run time. This potentially enables the
algorithm to overcome local optima. For a more comprehensive analysis of Simulated anneal-



2.4. SINGLE-OBJECTIVE SCHEDULING 13

ing see, for example, Aarts et al. [1]. Simulated annealing was successfully applied to many
complex scheduling problems, see, for example, Hart et al. [76]. Tabu-search works similar to
Simulated annealing, see, for example, Hertz et al. [78]. Here, moves to neighboring schedules
with a lower objective are also possible. Contrary to Simulated annealing the neighborhood
search of schedules is not probabilistic. Here, at each iteration a list of moves that are not
allowed is kept. This list of not allowed moves is limited. Every time a move to a neighbor
schedule is made the reverse move is entered at the top of the tabu list. This avoids the
returning to local optima that have been visited before. The determination of the appropriate
size of the not allowed moves list is crucial to the overall performance. If the list is too short,
cycling may occur, if the list is too long, the search is too restricted. The algorithm ends after
a fixed number of movements.
This section ends with the presentation of Evolutionary Algorithms to solve various practical
scheduling problems. Montana [109] states: ”The reason for the success of evolutionary algo-
rithms at a wide and ever-growing range of scheduling problems is a combination of power
and flexibility.”. The power derives from the ability to find or approximate global optima
with a high quality. Evolutionary Algorithms are flexible as they can be applied to various
problems with only very limited modifications. However, if problem specific knowledge can be
integrated, the range of problems to which Evolutionary Algorithms can be effectively applied
increases. Evolutionary Algorithms for single and multi-objective optimization problems will
be introduced in more detail in Chapter 3. Hence, this section only provides a rough idea and
some practical scheduling problems.
Scheduling problems are often solved by using Genetic Algorithms as a subset of Evolution-
ary Algorithms. Here, a population of individuals that represent schedules is processed within
every iteration. Normally, each individual reflects the permutation of jobs onto the machines,
see Hart et al. [77]. The description of the permutation does not necessarily include real job
numbers but representatives. The fitness of each individual can be calculated by applying a
pre-defined schedule objective function. The procedure works iteratively. The current individ-
uals are used to generate a next generation of individuals, called children, by applying some
operators to change and combine the current individuals. During this process the fitness value
of the individuals is used to decide which individual to change or to use in combination with
other individuals. This process leads to a next generation that in most of the cases consists
of individuals with a higher fitness. The whole process ends after a fixed number of iterations
or by reaching a pre-defined fitness level.
The development of appropriate schedules for certain practical schedules by using Evolution-
ary Algorithm is still a time consuming task. Therefore, such approaches can typically only
be applied to offline problems or in cases where the generation of a new schedule is not time
critical. Furthermore, most of these practical problems only use a single objective.
An example of offline problems is the generation of a bus transit system as described by Deb et
al. [30]. In this example, the only criterion is the minimization of the overall waiting time of all
passengers. The generation process of possible schedules for a flow shop scheduling problem
is presented by Reeves et al. [128]. For this problem, the authors take the features of the
generated landscape into account and present further optimization possibilities. The problem
representation of flow shop problems is further analyzed by Cotta et al. [25]. They show that
representations in which absolute positions of jobs are coded perform better than all other
representations. The generation of a daily schedule for the catching and transportation of a
large number of live chickens to a factory with many constraints by using Genetic Algorithms
is presented by Hart et al. [76]. Here, the main focus is only generating a system that is able



14 CHAPTER 2. SCHEDULING SYSTEMS

to automatically produce schedules similar to the schedules generated by human beings. The
main difficulties lie in the huge number of constraints. The application of penalty functions has
proven to be beneficial since non-feasible solutions are sometimes kept within the population
but with a low probability. This enables the algorithm to avoid local optima.
Beside the above mentioned concepts for solving practical scheduling problems, methods like
co-evolution or Ant colonies are, for example, described by Hart et al. [77].

2.5 Multi-Objective Scheduling

In the previous section, several single-objective problems were introduced. Some of those
problems are already hard to solve. However, most of the real-world search and optimization
problems even involve multiple often conflicting objectives. Since no single solution can be
called an optimal solution to multiple conflicting objectives, the resulting multi-objective
optimization problem generates a number of trade-off optimal solutions. With the set of
trade-off solutions in mind, the task of the decision maker is to define which of those solutions
should be used.
This general problem structure can be found in many real life problems. Regarding the ex-
ample of parallel computers, the machine provider does not necessarily treat all users or user
groups in the same way. Jobs of preferred user groups might be executed earlier by further
delaying jobs of other user groups. In parallel, the machine providers often want to have a
high machine utilization. In most cases, this results in a conflict as it will be impossible to
satisfy all users and have a high utilization in parallel. Another example is the scheduling of
airplanes to gates at airports. Here, one goal is the minimization of the number of flights with-
out gate assignment. In parallel, the total passenger walking distances should be minimized
and gate assignment preferences of airlines should be maximized. All those single objectives
are conflicting in most cases.
This leads to the definition of a multi-objective scheduling problem. T’kind et al. [156, p. 107]
define a multi-objective scheduling problem as: ”the problem which consists of computing a
Pareto optimal schedule for several conflicting criteria. This problem can be broken down into
three sub-problems:

• modelling of the problem, whose resolution leads to the determination of the nature of
the scheduling problem under consideration as well as the definition of the criteria to be
taken into account.

• taking into account of criteria, whose resolution leads to the indication of the resolution
context and the way in which we want to take into account the criteria. The analyst
finalizes a decision aid module for the multicriteria problem, also called a module for
taking accounts of criteria.

• scheduling, whose resolution leads us to find a solution of the problem. The analyst
finalizes an algorithm for solving the scheduling problem, also called a resolution module
for the scheduling problem.”

The modelling of the underlying problem is of course critical and has a high influence on the
resulting system. Nevertheless, the modelling is very application dependent and therefore not
analyzed in more detail. The consideration of several objectives, however, is important and
several approaches will be presented within this work. This incorporation highly influences the



2.5. MULTI-OBJECTIVE SCHEDULING 15

resulting schedule decision. Before the precise introduction of multi-objective optimization is
presented, we will extend the scheduling notation of Section 2.1.

2.5.1 Extended Notation for Multi-Objective Scheduling Problems

The previously introduced scheduling notation misses the ability to express multiple objectives
and dependencies between those objectives. T’kindt et al. [156, p. 109] extended the general
notation of Graham et al. [70] by specifying the γ field in more detail. Here, some examples
for possible γ entries are presented:

• Z if the objective is to minimize the unique objective Z

• Fl(Z1, . . . Zk) if the objective is to minimize a linear convex combination of k objectives

• ε(Zu|Z1, . . . Zu−1, Zu+1 . . . Zk) indicates that only the objective Zu is minimized, subject
to all the other objectives being upper bounded by known values

• FTp(Z1, . . . Zk) indicates an objective function which is an expression of a distance to a
known ideal solution

• FS(Z1, . . . Zk) indicates a very particular function which takes into account a known
ideal solution to find the sought solution

• GP (Z1, . . . Zk) if there are goals to reach for each objective in the scheduling problem
(goal programming)

• Lex(Z1, . . . Zk) indicates that the decision maker does not authorize trade-offs between
objectives. The order in which the objectives are given is related to their importance.

• #(Z1, . . . Zk) indicates the enumeration problem of all the Pareto optima. Therefore we
associate uniquely to this problem an a posteriori resolution algorithm which does not
use any of the aggregation methods.

Later, we will use this extension to classify several scheduling systems. Before this, we intro-
duce the concept of multi-objective optimization.

2.5.2 Multi-Objective Optimization

Within this section, we will first introduce the basic concepts and terminology of multi-
objective optimization problems in general. Later, this general structure will be mapped to
the scheduling problems. A comprehensive introduction to the field of multi-objective opti-
mization can be found by Miettinen [108], Deb [27], Coello Coello et al. [23], and Osyczka [117].
Without loss of generality, a minimization problem is assumed in the remainder of this thesis.
A maximization or mixed maximization/minimization problem can be transformed into a
minimization problem by multiplying the maximization problem objectives with -1.
A general Multi-Objective Optimization Problem consists of a set of l decision variables and
a set of k objective functions. A decision vector ~x ∈ X of the problem specifies a value for
each of the l decision variables. X is denoted as the decision space. The k objective func-
tions are conflicting. Otherwise, the problem degenerates to a single-objective optimization



16 CHAPTER 2. SCHEDULING SYSTEMS

problem. The outcome of the k objective functions defines the objective space Y of dimen-
sion k (sometimes also called the solution space). Thus, the k-th objective function fk(~x) is
described by fk(~x) : Rl → R and the vector function ~f(~x) by ~f(~x) : Rl → Rk. Furthermore,
problem related constraint functions define the feasible decision space Xf . In the remainder
of this work we will not further specify those constraint functions. For general multi-objective
optimization problems they are often described by several inequality functions. For schedul-
ing problems the feasible set simply consists of all schedules that satisfy all given scheduling
constraints. The multi-objective problem can now be formulated as:

minimize ~y = ~f(~x) = (f1(~x), f2(~x), . . . , fk(~x))
subject to ~x = (x1, x2, . . . , xl) ∈ Xf (2.1)

The feasible region within the objective space Yf can be described by Yf = ~f(Xf ) =⋃
~x∈Xf

~f(~x).
As the problem is a multi-objective problem, usually no element of the feasible set ~x′ ∈ Xf

exists that minimizes all given simple objective functions:

~x′ = arg min
~x∈Xf

{f1(~x)} = . . . = arg min
~x∈Xf

{fk(~x)}. (2.2)

During the multi-objective optimization a partial ordering of the given solutions is used
(Pareto 1896). Here, a solution ~f(~x1) is superior to another solution ~f(~x2) if ~f(~x1) is better
in all objectives than ~f(~x2). This observation leads to the concept of Pareto dominance and
Pareto optimality.

Definition 1 Pareto Dominance: A decision vector ~x1 is said to dominate another deci-
sion vector ~x2, iff:

∀i ∈ {1, . . . , k} : fi(~x1) ≤ fi(~x2) ∧ ∃i ∈ {1, . . . , k} : fi(~x1) < fi(~x2).

This establishes the so-called Pareto preference relation ≺P . Here, ~x1 ≺P ~x2 describes that
the decision vector ~x1 dominates the decision vector ~x2. If neither ~x1 ≺P ~x2 nor ~x2 ≺P ~x1 the
decision vectors are called indifferent or ~x1 ∼ ~x2. In such cases, a more detailed specification
of preferences would be required to decide which decision vector is better.
Using the given definition of Pareto dominance the Pareto optimality can be defined in the
following way.

Definition 2 Pareto Optimality: A decision vector ~x ∈ Xf is said to be non-dominated
regarding a set A ⊆ Xf iff 6 ∃~a ∈ A : ~a ≺P ~x. Furthermore, ~x is said to be Pareto optimal iff
~x is non-dominated regarding Xf .

In Pareto optimization, we are searching for the entire set of Pareto optimal decision vectors
which is called the Pareto optimal set and the corresponding objective vectors the Pareto
front.



2.5. MULTI-OBJECTIVE SCHEDULING 17

Definition 3 Non-dominated Set and Front: Let A ⊆ Xf . The function nd(A) gives the
non-dominated subset of A:

nd(A) = {~x ∈ A| 6 ∃~x′ ∈ A with ~x′ ≺P ~x}

The corresponding set of objective vectors ~f(nd(A)) is the non-dominated front regarding A.
Furthermore, the set XP = nd(Xf ) is called the Pareto optimal set and the set ~f(XP ) is
denoted as the Pareto front.

For most real life problems it is impossible to generate the whole Pareto front. Therefore,
nearly all problems only use an approximation of f(XP ). At the technical level it is not very
easy to efficiently calculate the Pareto front of a given set of objective vectors. The algorithm
with the best known processing time was invented by Kung et al. (1975) and is described in
detail by Deb [27, p. 38].
After this more formal introduction of multi-objective optimization, we will briefly present
some theoretical results for multi-objective scheduling systems, followed by an introduction
of various methods to solve multi-objective optimization problems.

2.5.3 Theoretical Analysis of Multi-Objective Scheduling Systems

The theoretical work for single-objective scheduling systems is limited, as already shown in
Section 2.3. Hence, the theoretical analysis of multi-objective scheduling problems is even more
difficult and occurs rarely. Pinedo presents a representative simple example of the problem
structure [123, p. 79]. Here, the single-objective problem 1||θ1

∑
wjCj + θ2Lmax has been

proven to be NP-hard in the strong sense for arbitrary θ1 and θ2. However, it is possible to
generate the Pareto front for the problem 1||Lmax,

∑
wjCj . Furthermore, the single-objective

problems 1||
∑

wjCj and 1||Lmax can be solved optimally by using the weighted shortest
processing time first algorithm and the earliest due date first algorithm respectively.
Nevertheless, several theoretical results have been collected by T’kindt et al. [156] for various
machine configurations and objective function combinations. The later presented scheduling
problems for high performance parallel computers all belong to the class of NP-hard problems.
In the next section, we will therefore discuss possible solution techniques.

2.5.4 Multi-Objective Optimization Techniques

The solution of multi-objective problems is often difficult. Frequently, this results from the
lack of well defined objectives. Instead only ”orientations” can be provided. Furthermore, the
decision maker is rarely a unique individual but a group of people. Even more problemati-
cally, the set of possible solutions is rarely fixed, but tends to evolve over time. Finally, the
decision maker might not be able to express the optimal solution. This makes various solution
techniques to solve multi-objective optimization problems valuable.
Multi-objective optimization techniques have been classified into four categories by Mietti-
nen [108, p. 63]:

1. methods where no articulation of preference information is used (no-preference meth-
ods),

2. methods where a priori articulation of preference information is used (a priori methods),



18 CHAPTER 2. SCHEDULING SYSTEMS

3. methods where progressive articulation of preference information is used (interactive
methods), and

4. methods where a posteriori articulation of preference information is used (a posteriori
methods).

This classification is not complete and in some cases methods may belong to two of the
mentioned categories. No-preference methods do not assume any information about the im-
portance of the various objectives. A heuristic is used to generate the next single optimal
solution. This approach does not try to find several solutions in parallel. Furthermore, the
progress of the heuristic cannot really be influenced. The a priori attempts assume more
information about the optimization problem. Here, it is possible to identify the importance of
the various objectives or to specify some ideal solutions. Hence, the problems often degenerate
into single-objective problems as only one resulting function has to be optimized. The inter-
active methods use preference information during the optimization process. Such methods
can only be applied, if the decision maker has a clear explicit or implicit objective function in
mind. Furthermore, the number of interactions has to be limited. The a posteriori approach
does not assume preference information in advance but generates the Pareto front. After this,
the decision maker is able to select certain solutions from this front. The main advantage
of this approach is the availability of the Pareto front (or at least an approximation). This
enables the decision maker to use higher level information to select the final solution. This
higher level information can often not be expressed explicitly. Furthermore, the individual
decision might highly depend on the given Pareto front and in this sense from other possible
trade-off solutions.
In the following, we will describe some classical solution methods. These methods are called
classical in order to differentiate these methods from the later introduced methods that use
Evolutionary Algorithms. The classical methods try to aggregate the objectives into a single,
parameterized objective function. Note that the parameters are not specified by the decision
maker but systematically varied during the optimization process. Within the different opti-
mization runs various parameterizations are used to generate the approximation of the Pareto
front. Here, we present only some example methods. By this, we try to assign each method
to the a priori approach, the interactive approach or the a posteriori approach. However, this
assignment is not unique and some methods can belong to several categories depending on
the intension and input of the decision maker. Details on the no-preference methods are given
by Miettinen [108, p. 67ff]. A complete and detailed introduction of all classical methods is
provided by Miettinen [108], Deb [27], and Coello Coello et al. [23].

2.5.4.1 A Priori Methods

This group of techniques consists of all methods that assume either a pre-ordering of the
objectives or a pre-defined desired goal for each criterion. The most common methods are the
Lexicographic Ordering and Goal Programming.

2.5.4.1.1 Lexicographic Ordering (Lex(Z1, . . . , Zk)) Within this method the decision
maker has to order all objectives corresponding to their absolute importance. This results in
an ordered set of all objective functions (fo1 , fo2 , . . . , fok

).
Then the problem is minimized for the objective function fo1 . If a unique solution exists the
optimization ends. Otherwise, the objective function fo2 is minimized for all solutions that



2.5. MULTI-OBJECTIVE SCHEDULING 19

minimize fo1 . If this results in a unique solution, the optimization process ends, otherwise the
remaining functions will be used until a single solution is found or the procedure ends with
several solutions as also the last of the used objective functions does not generate a unique
solution.

2.5.4.1.2 Goal Programming (GP (Z1, . . . , Zk)) For this optimization technique many
derivations exist. Therefore, we will only present the main idea behind this approach. The
decision maker has to define a goal or target ti for each objective i ∈ 1, . . . , k. This goal might
not be reachable if the decision maker is too optimistic. The method then tries to minimize
the weighted absolute deviation from the defined targets:

minimize
k∑

i=1

wi|fi(~x)− ti|

subject to ~x ∈ Xf . (2.3)

The weights are used to express the different influences of the various objectives to the overall
solution. The final decision highly depends on the pre-defined targets for the objective and
on the given weights.

2.5.4.2 Interactive Methods

There is a number of different interactive methods where only very little knowledge about
the problem is needed in advance. The main aspect of all these approaches is that at certain
points in time the decision maker is involved in the optimization process by defining weight
vectors, goals or directions for the next optimization interval. This makes such methods
popular in practice. However, they cannot be processed automatically. The most popular
interactive procedures are the interactive surrogate worth trade-off method, the step method,
the reference point method, the guess method, and the light beam search. More details about
these approaches can be found in the book of Miettinen [108, p. 131ff.].

2.5.4.3 A Posteriori Methods

These methods directly generate the Pareto front without prior knowledge about the ranking
of the various objectives. After the generation of the Pareto front the decision maker is able
to select certain solutions among all alternatives. The problem with such approaches is the
typically computational expensive generation of the Pareto front. During this generation, a
priori methods are used to generate individual solutions. Furthermore, technical questions
like the presentation of the Pareto front in cases with more than three objectives arise.

2.5.4.3.1 Weighted Sum Method (Fl(Z1, . . . , Zk)) Using this method all objectives
are associated with a weight. Then the weighted sum of all objectives has to be minimized.
Often, the weights are normalized.



20 CHAPTER 2. SCHEDULING SYSTEMS

minimize
k∑

i=1

wifi(~x)

subject to ~x ∈ Xf . (2.4)

where ∀i ∈ {1, . . . , k} : wi ≥ 0 ∧
k∑

i=1

wi = 1

The Pareto front can then be generated by varying the weights wi and calculating the cor-
responding solution. Depending on the function evaluations this might be time consuming.
Furthermore, a uniformly distributed set of weights wi does not need to find a non-uniformly
distributed set of Pareto optimal solutions. Therefore, it might become crucial to select ap-
propriate weights in order to generate a well-spread Pareto front.

2.5.4.3.2 epsilon-Constraint Method (ε(Zu|Z1, . . . , Zu−1, Zu+1, . . . , Zk)) Within this
approach only the most important objective fu(~x) is minimized. For all other objectives the
decision maker must provide an upper bound. The optimization approach can be described
by:

minimize fu(~x)
subject to ∀i ∈ {1, . . . , k} ∧ u 6= i : fi(~x) ≤ εi (2.5)

and ~x ∈ Xf .

The Pareto front can be generated by changing the upper bounds for the various objectives.
This variation of upper bounds cannot be done arbitrarily as with too small bounds no
solution can be found. Otherwise, an upper bound that is too high does not change the
resulting solution.

2.5.4.4 Problems of Classical Multi-Objective Optimization Methods

Most of the classical multi-objective optimization approaches convert the original problem into
a single-objective problem that can be solved with well-known techniques. The transformation
of the problems often requires some problem specific information from the decision maker. This
reflects the main disadvantage as the decision maker for complex multi-objective problems
does not know the potential trade-offs in advance. Under these circumstances, the definition of
weights or certain bounds is often not possible. Furthermore, the generation of the Pareto front
with classical optimization methods is difficult if a unique distribution within the decision
space does not reflect a well-defined distribution in the objective space. Additionally, the
convergence to an optimal solution often depends on the chosen initial solution. Moreover, all
algorithms only generate one possible Pareto optimal solution at a time. Hence, the generation
of the whole Pareto front can be computationally very time consuming as parallel machines
cannot be used efficiently. The multi-objective Evolutionary Algorithms that will be presented
in Chapter 3 are able to overcome most of the described restrictions.



2.5. MULTI-OBJECTIVE SCHEDULING 21

2.5.5 First Multi-Objective Scheduling Approaches

This section provides the details of all existing scheduling systems known to the author
that use more than two objectives. On the one hand, this collection of problems and the
corresponding solutions motivate our methodology to automatically develop multi-objective
scheduling algorithms. On the other hand, the presentation emphasizes that only very few
scheduling problems are tackled with more than two objectives.
On the theoretical level only simplified problems have been solved and analyzed as already
discussed in Section 2.5.3. For these more idealistic problems some deterministic algorithms
or heuristics with provable bounds have been proposed.
Most of the realistic problems are solved with the help of heuristics and Evolutionary Al-
gorithms similar to the single-objective case discussed in Section 2.4. Here, we present some
examples for multi-objective problems. A collection of real life multi-objective problems that
have been solved by using Evolutionary Algorithms can be found by Coello Coello et al. [23]
and Ehrgott et al. [38].
The works of Stein and Wein [152] and later Mu’alem and Feitelson [112] analyze the prob-
lem Pm|mj , rj , prmp|

∑
wjCj , Cmax for parallel computers. However, these works only use

two objectives to compare several possible algorithms. To this end, upper bounds for com-
petitive factors are derived for the different scenarios and algorithms. Both objectives are not
simultaneously optimized.
The problem of generating the assignment of airplanes to gates at airports is presented by
Dorndorf et al. [32]. Here, typical objectives and constraints are given. The work includes an
overview of the most popular solution techniques in this field. These are branch and bound,
Tabu-search, Genetic Algorithms and rule based expert systems. A Simulated annealing ap-
proach is used in the work by Drexl et al. [35] to solve the gate assignment problem using three
objectives. These are the minimization of the ungated flights, the minimization of the total
passenger walking distance and the maximization of the total gate assignment preferences of
the different airlines. The Simulated annealing technique has proven to work well by solving
this problem.
As an example from the area of scheduling the generation of energy by a collection of power
plants is given by Srinivasan et al. [151]. Here, two objectives are used: the produced energy
by all power plants and the corresponding ecological emission. The system first generates the
Pareto front by using derivation of Evolutionary Algorithms that are similar to the multi-
objective Evolutionary Algorithms presented in Section 3.2.
Guntsch et al. [71] use an Ant colony approach to solve the two-dimensional scheduling
problem of minimizing the total tardiness and minimizing the total changeover cost for a
single machine. To this end, two Ant colonies are used in parallel, each optimizing one of
the objectives. The combination of both colonies during the optimization process forms the
resulting Pareto front. Therefore, this approach is of type #(Z1, Z2).
Balicki et al. [11] use three objectives during the process of finding appropriate allocations
of computer programs modules within a distributed computer system. The algorithm tries
to maximize the performance of the bottleneck computer, to minimize the costs of the com-
putation and to maximize the total numerical performance of the selected workstations. The
algorithm is based on a multi-objective Evolutionary Algorithm (NSGA-II), which will be
presented in Section 3.2.2. Furthermore, the operator that modifies current schedules uses a
Tabu-search technique.
The problem of job shop scheduling with the objectives of minimizing the total flow time and



22 CHAPTER 2. SCHEDULING SYSTEMS

the total tardiness has been treated by Tamaki et al. [155]. They use a Genetic Algorithm with
a parallel selection strategy. A permutation ordering scheme is used for all jobs. However, the
online scenario is not time critical as a new genetic algorithm optimization can be initiated
frequently. The work by Bagchi [9] uses the same objectives and furthermore minimizes the
makespan. Here the NSGA-II algorithm is again used with a permutation ordering of all jobs.
The last work mentioned here is done by Cochran et al. [22]. In this work, the scheduling of
parallel machines uses three objectives, the total weighted completion time, the total weighted
tardiness, and the makespan. However, in contrast to the scheduling problem of parallel
computers, only sequential jobs need to be scheduled. A Genetic Algorithm is applied to
vary the different possible schedules. Like in the mentioned work by Tamaki et al. [155], the
Genetic Algorithm has enough computational time to generate new solutions in a periodic
time interval. A special selection scheme ensures the development of the Pareto front. Again,
the underlying scheduling problem uses a permutation ordering of all jobs.
The list of first attempts to apply multi-objective optimization techniques could be extended,
see, for instance, Coello Coello [23]. None of the solutions that deal with real life problems
is based on classical multi-objective optimization approaches. In addition, most of them aim
at generating the Pareto front in order to solve the underlying problem. In those cases, often
Evolutionary Algorithms are applied that have proven to work well in such scenarios. There-
fore, some of those algorithms will be presented in Section 3.2. All of the shown problems do
not use more than three objectives. As mentioned above, real life problems, like the scheduling
of massively parallel processing systems, might need more than three objectives to model the
relationship to different user groups. Thus, the presented techniques do not fit to our problem.
Within this work we will exemplarily incorporate seven objectives, see Chapter 6. This will
highly increase the flexibility of the decision maker to specify the required system behavior.

2.6 General Design Process of Scheduling Systems

Within this section some general design recommendations for the development of appropriate
scheduling systems will be given. During the generation of our multi-objective scheduling
approach for parallel computers we will in some sense follow this general guideline. Krallmann
et al. [94] have introduced and discussed this subject in more detail.
During the development of scheduling systems the task of exploring the machine configurations
and all necessary constraints (physical and logical scheduling constraints) might be time
consuming. However, the difficult task is to describe the objectives of the machine providers
in a way that can automatically be evaluated. Furthermore, the machine providers respectively
owners may not be able to express their preferences with mathematical equations.
The development of scheduling strategies is based on the given objective functions. There-
fore, the scheduling objective should be expressed as precisely as possible. The goal of the
resulting scheduling strategies is the best achievable allocation of machines to jobs regarding
this objective. Thus, the system might be able to reduce the number of required machines
to process a certain amount of jobs. Furthermore, more jobs could be solved on the available
machines within the same time interval. Therefore, the quality of a good scheduling system
can often be compared with providing more machines to process the available jobs. Note that
this point of view is simplified as the machine provider might have other preferences than
processing as many jobs as possible on the local machines.
Krallmann et al. [94] divide the scheduling algorithm development into three parts: the



2.6. GENERAL DESIGN PROCESS OF SCHEDULING SYSTEMS 23

scheduling policy, the objective function, and the scheduling algorithm.

2.6.1 Scheduling Policy

At the highest level of the scheduling system development the machine provider or owner
needs to specify a set of rules. Those rules are used to determine the machine allocation of
all jobs. Hence, the scheduling policy is able to define which job is started on which machine
subset in the case of conflicts between several jobs. Such conflict situations occur frequently
as we assume the allocation of rare machines.
The set of rules may be described in a non-formal way. However, using those rules it is
possible to distinguish between good and bad schedule outcomes. Some rules need to be
explicit like ”Finish every job as soon as possible if no other rule is affected”. Furthermore,
those scheduling policies enable the machine provider to specify certain rules for specific users
or user groups in order to specify certain preferences.
Krallmann et al.[94] define two properties of a good scheduling policy:

1. The scheduling policy is able to settle conflicts between rules.

2. The scheduling policy can be implemented within an algorithm.

2.6.2 Scheduling Objective

At the next level of the development the scheduling policy is refined to a scheduling objective.
Here, the goal is to determine an objective function that for every possible schedule calculates
a single scalar value. Then, different schedules can automatically be compared by using these
scalar values. To derive this scheduling objective the following approach can be used, see
Krallmann et al. [94]:

1. For a typical set of jobs determine the Pareto front of possible schedules (using the
scheduling policy).

2. Define a partial order of these schedules.

3. Derive an objective function that generates this order.

4. Repeat this process for other sets of jobs and refine the objective function accordingly.

The problem with this approach is the generation of the Pareto front of possible schedules
by using the scheduling policy. This policy can be described in a non-formal way. However,
during the generation of the Pareto front it is necessary to automatically decide whether a
solution dominates other solutions and vice versa.

2.6.3 Scheduling Algorithms

The scheduling algorithm is responsible for generating a valid schedule for all incoming jobs. A
good scheduling algorithm is able to generate optimal or nearly optimal schedules for various
job streams with respect to the previously defined objective function. Furthermore, the time
and resource consumption to calculate the schedule should be limited. The development of
scheduling algorithms depends on the actual application. For some problems, a standard algo-
rithm, taken from the literature, might be appropriate. In other cases, it might be necessary
to develop or at least adapt new algorithms.



Chapter 3

Evolutionary Optimization

This chapter introduces the concepts of Evolutionary Algorithms in more detail. Note that all
presented details are used in the remainder of this thesis. Furthermore, it is not sufficient to
just reference existing publications as our work differs in many details from these works. Thus,
we detail our approaches in order to provide all information that is necessary to reproduce
the later presented results.
As already mentioned in Chapter 2 most real life scheduling problems are solved by using
such techniques. Within this work, we will also apply several Evolutionary Algorithms to
solve single-objective as well as multi-objective optimization problems. To this end, a brief
introduction to the general concept of Evolutionary Algorithms will be given followed by
specialized techniques for single-objective problems. Those methods are then extended to
solve multi-objective optimization problems.
Evolutionary Algorithms mimic basic principles of biological evolution in order to solve com-
plex problems. Typically, they are applied as randomized search heuristics for solving black-
box optimization problems. The common term Evolutionary Algorithms (EA) comprises sev-
eral techniques such as Genetic Algorithms (GA) (see Holland [80]), Evolution Strategies
(ES) (see Schwefel [134] and Rechenberg [125]), and Evolutionary Programming (EP) (see
Fogel [60]). Other, also nature driven methods, like Fuzzy Logic (e.g. Cordón et al. [24]), Neu-
ral Nets (see Peterson et al. [122]), Ant colonies (e.g. Guntsch et al. [71]), Simulated annealing
(e.g. Aarts [1]), and Particle Swarm Optimization (e.g. Kennedy et al. [90]) are not included
in the group of Evolutionary Algorithms as in these cases the problem adaptation does not
operate on an additional abstraction level that encodes the underlying problem (genotype).
Evolutionary Algorithms have clearly demonstrated their capabilities to yield good approxi-
mate solutions in many real life scenarios. They are often applied for optimization problems
with discontinuous, non-differentiable, and even noisy or moving solution spaces, see Bäck et
al. [7, 8]. Classical optimization techniques, like direct methods or gradient based methods,
tend to fail in such scenarios.
All of these techniques use at generation t a population Pt,µ of µ individuals. An individual is
an encoded solution (i.e. a decision vector) to some problem. Each individual can be repre-
sented in various ways, e.g. by a string corresponding to a biological genotype. This genotype
defines the characteristics of the individuals. The phenotype is the decoded genotype and re-
flects the observable behavior of the specific individual. An Evolutionary Algorithm requires
both, an objective and a fitness function. The objective function reflects the problem domain
and defines the quality of a given solution of the real problem. To this end, the phenotypic

24



25

representation of the specific individuals is used. The fitness function measures how well a par-
ticular solution solves the optimization problem. In most cases, objective and fitness functions
are identical. However, in the context of multiple objectives they differ fundamentally.
Just as in nature, Evolutionary Algorithms modify the individuals of a given population Pt,µ to
generate solutions with a higher fitness. This process is repeated until a defined stop criterion
is reached. A typical stop criterion is, for example, a pre-defined number of generations of
the population. The three major evolutionary operators to modify the individuals of the
population are mutation, recombination, and selection. The mutation slightly modifies the
genotype of the individuals. The recombination generates new individuals by combining the
genotypic representation of several existing individuals. The selection reduces the number
of individuals that form the next generation by choosing the individuals with higher fitness
values. Using selection, the population gradually moves to regions of the search space in the
proximity of optimal solutions.
The selection of an appropriate Evolutionary Algorithm for a specific problem is important.
Often, two conflicting goals can be observed, the exploration and the exploitation. The explo-
ration tries to find solutions in regions of the search space that have not been analyzed before.
In opposite, the exploitation aims at identifying solutions nearby existing solutions in order
to improve the resulting solution quality. Different Evolutionary Algorithms provide different
abilities to explore and exploit the solution space of a given problem. On the one hand, this
is caused by different mutation and recombination operators that are mainly responsible for
the exploration task. On the other hand, the various selection operators are mainly focused
on the exploitation.
To put things into more concrete terms, Algorithm 3.1 outlines the general structure of
Evolutionary Algorithms, as, for example, presented by Bäck et al. [7, 8].

Algorithm 3.1 Outline of an Evolutionary Algorithm.
P0,µ ← initialization, P0,µ ∈Mµ(I);
P0,µ ← evaluation;
t← 0;
while (termination criterion not fulfilled) do

P ′
t,λ ← recombination(Pt,µ), P ′

t,λ ∈Mλ(I);
P ′′

t,λ ← mutation(P ′
t,λ), P ′′

t,λ ∈Mλ(I);
P ′′

t,λ ← evaluation;

P(t+1),µ ←
{

select(P ′′
t,λ) for (µ, λ) selection

select(Pt,µ ∪ P ′′
t,λ) for (µ + λ) selection

{P(t+1),µ ∈Mµ(I)}

t← t + 1
end while

The algorithm starts with the initialization and evaluation of a parent population P0,µ. This
population consists of µ individuals of the individual space I. In the following, we denote a
multi set of µ individuals of the individual space I by Mµ(I). Thus, the population P0,µ is
element of Mµ(I). After the initialization and evaluation of the first parent population, the
evolutionary loop is repeated until a given termination criterion is fulfilled.
First, λ offspring individuals that form P ′′

t,λ are generated by means of the random varia-
tion operators from the current parent population. This is done by employing recombination
and/or mutation operators, which can be specific to the problem at hand. Then, the objective
function values of all new individuals are calculated. Based upon the evaluation results, a new



26 CHAPTER 3. EVOLUTIONARY OPTIMIZATION

population of individuals is selected (P(t+1),µ). In the case of a comma strategy (µ, λ), the new
parents are chosen from the offspring (P ′′

t,λ) only. This is normally the case for Genetic Algo-
rithms. The plus strategy (µ + λ) takes also the parents into account (Pt,µ ∪ P ′′

t,λ). This kind
of selection is often limited to Evolution Strategies. Each loop incorporating the procedures
above represents a generation.
Evolutionary Algorithms are applied to single- and multi-objective optimization problems.
However, the selection strategy differs completely as algorithms for multi-objective optimiza-
tions must ensure a high diversity between the generated solutions. Here, we present Evolution
Strategies as they are applied in the remainder of this work. First, we introduce algorithms
for the single-objective case followed by a presentation of extensions for the multi-objective
scenario.

3.1 Single-Objective Evolutionary Algorithms

The set of existing single-objective Evolutionary Algorithms is large. It consists, for example,
of the already mentioned Genetic Algorithm, the Evolutionary Programming, and Evolution
Strategies. In this section, we only introduce Evolution Strategies in more detail as only those
strategies are applied in the remainder of this work. Although originally Evolution Strategies
were designed for discrete parameter settings, they are nowadays mainly used in the area of
numerical parameter optimization.
A new notation for Evolution Strategies is (µ, κ, λ, ρ) [137]. This describes that µ parents
produce λ offsprings within each generation. To this end, the recombination of ρ parents
and mutation are applied. Further, each individual can participate in at most κ successive
generations. This general notation includes the older variants (µ, λ) and (µ + λ) as κ = 1 is
equivalent to the comma strategy and κ =∞ specifies the plus strategy. All four parameters,
µ, λ, κ, and ρ are called exogenous strategy parameters and are kept constant during the
evolution.
The population Pt,µ ∈ Mµ(I) consists of µ individuals. An individual ak ∈ I is described
by an object parameter set (or vector) ~ok = (o1, o2, . . . , ou), a set of strategy parameters
~sk = (s1, s2, . . . , sv) and its objective function value Fk = F (~ok). The length of the objective
vector which is equal to the number of elements of this vector is u and the length of the
strategy parameter is v. However, in most cases, only one strategy parameter is used or every
object parameter consists of a corresponding strategy parameter (u = v), see Section 3.1.3.1.
For the remainder of this chapter, we will therefore assume that u = v.

ak = (~ok, ~sk, F (~ok)) (3.1)

The strategy parameters ~sk are called endogenous parameters. They influence the genetic
operators, like the mutation. Further, endogenous strategy parameters can evolve during the
evolution process and are needed in self-adaptive Evolution Strategies, see Section 3.1.5.
The basic algorithm of an Evolutionary Algorithm as described in Algorithm 3.1 is extended
to describe the working concept of Evolution Strategies in Algorithm 3.2. For further details,
see Beyer and Schwefel [12].
During the initialization of the Evolution Strategy a first population is randomly generated
and evaluated. Then, λ offsprings are created. To this end, a parent pool is built by randomly
choosing ρ parents. If ρ = 1 no recombination of parents is used. Then the strategy param-
eters of the parents are recombined followed by a recombination of the object vectors. The



3.1. SINGLE-OBJECTIVE EVOLUTIONARY ALGORITHMS 27

calculated strategy parameters then undergo a mutation. This is followed by the mutation of
the object parameters using the already mutated strategy parameters. Hence, the sequence
during the mutation must not be changed. Note that the resulting offspring parameters are
marked by using a tilde. Finally, the fitness value of the generated offsprings is calculated.
The selection of the next generation is influenced by κ. If κ = 1 the selection is only based
on the generated offsprings. Otherwise, if κ =∞, the combined set of parents and offsprings
undergoes a selection process. In this case, the algorithm ensures that the best solution is
not lost. Hence, such algorithms are called elitist. For all other values of κ, the selection in-
corporates all parent individuals that participated in less than the last κ generations. The
termination criterion can be of various types, see Beyer and Schwefel [12]. In this work, we
always specify a maximum number of generations as our termination criterion.

Algorithm 3.2 (µ, κ, λ, ρ)-Evolution Strategy
P0,µ ← initialization, P0,µ ∈Mµ(I);
P0,µ ← evaluation;
t← 0;
while (termination criterion not fulfilled) do

for (i = 1 to λ) do
{i is a simple counter variable}
Pooli ← marriage (Pt,µ, ρ);
~si ← strategy recombination (Pooli);
~oi ← object recombination (Pooli);
~̃si ← strategy mutation (~si);
~̃oi ← object mutation (~̃si, ~oi);
F̃i ← F (~̃o)

end for
P ′

t,λ ←
{(

~̃oi, ~̃si, F̃i

)
, i = 1, . . . , λ

}
; {P ′

t,λ ∈Mλ(I)}
if (κ = 1) then

P(t+1),µ ← selection (P ′
t,λ, µ);

else if (κ =∞) then
P(t+1),µ ← selection (P ′

t,λ ∪ Pt,µ, µ);
else

P(t+1),µ ← selection (P ′
t,λ ∪ Pt,µ, µ, κ);

{P(t+1),µ ∈ Mµ(I) includes only individuals that participate in less than the last κ
generations.}

end if
t← t + 1

end while

3.1.1 Different Encoding Techniques

Evolution Strategies can be applied to many different kinds of optimization problems. De-
pending on the type of problem, different encoding techniques for the object parameters are
used, see, for instance, Beyer and Schwefel [12]. In this work, we use real-value encoded ap-
proaches as well as encoding techniques for combinatorial search spaces. In the following, we
will present the three main operators namely the selection, the mutation, and the recombina-



28 CHAPTER 3. EVOLUTIONARY OPTIMIZATION

tion. During the discussion of these operators, the two different encoding techniques will be
introduced.

3.1.2 Selection

The selection operator directs the evolutionary process to promising regions of the object
parameter space. In Evolution Strategies normally a deterministic process is used that selects
the individuals with the highest fitness values of the current generation to be the parents of
the next generation. That is, only those individuals are chosen that provide the highest fitness
values, see Bäck and Schwefel [7]. This technique is called truncation or breeding selection.
In the case of a (µ, λ) selection (κ = 1), only the newly generated offspring individuals
participate during the selection. Consequently, this selection strategy is non-elitist. Contrary,
the (µ + λ) selection (κ = ∞) is elitist as the best individuals of all parents and offsprings
are used to build the next generation. In all other cases (1 < κ < ∞) the selection is not
necessarily elitist as only individuals survive the selection process that participated in at most
the last κ generations.
Beyer and Schwefel [12] recommend to apply a (µ, λ) selection strategy in unbounded search
spaces while the (µ + λ) strategy should be used in discrete finite size search spaces.
As already mentioned, the truncation selection is normally used for Evolution Strategies, see
Bäck and Schwefel [7]. However, in some exceptional cases other selection operators, like tour-
nament selection, proportionate selection, and ranking selection are applied. Normally, those
selection strategies are often only applied to Genetic Algorithms. Those possible operators are
collected by Deb [27]. Here, we will introduce the binary tournament selection and the fitness
proportional selection scheme as both will be used within the multi-objective Evolutionary
Algorithms.
The binary tournament selection process chooses two individuals of the current population and
the individual with the better fitness is selected to participate within the next generation, see
Deb [27, p. 89]. Then, this process is repeated until enough individuals have been selected. The
various tournament selection operators differ in the way they choose the next two individuals
for a tournament. However, if some bookkeeping is implemented, it can be ensured that each
individual participates exactly twice in such a tournament. In this case, the best individual
is copied twice to the next generation.
During the fitness proportional selection, individuals are copied to the next generation mul-
tiple times. The number of copies is proportional to the fitness of the individuals. Thus,
individuals with higher fitness generate more offsprings than individuals with worse fitness,
see Bäck et al. [6, C2.2]. We assume that the average fitness over all individuals within the
population is Favg and the fitness of a special individual ak ∈ I is Fk. Then the probability
of copying this individual to the next generation is Fk/Favg. To this end, two versions of
the fitness proportional selection scheme exist, the roulette wheel selection and the universal
stochastic sampling. During the roulette wheel selection, the wheel is divided into partitions
corresponding to the population size where the size of each partition is proportional to the
fitness of the corresponding individual. Then, the next generation of µ individuals is chosen
by sampling µ-times over this generated roulette wheel. Contrary, the stochastic universal
sampling determines µ points on the wheel with equal distances between any two neighboring
points while ensuring that the whole wheel is used. This leads to µ-points on the wheel and
to the corresponding individuals.



3.1. SINGLE-OBJECTIVE EVOLUTIONARY ALGORITHMS 29

The fitness proportional selection scheme has the risk of quickly losing the diversity within
the population, if the fitness function is not well chosen.

3.1.3 Mutation of Object and Strategy Parameters

The mutation operator is the main variation operator for Evolution Strategies. Following
the guide by Bäck and Schwefel [12] this operator should provide the three characteristics of
reachability, unbiasedness, and scalability.
Reachability describes that every solution within the search space can be found after a finite
number of mutations or generations. Unbiasedness characterizes the variation operators as
the exploring operator. To this end, the variation operators should not have any preferences
of directions within the search space. The scalability condition states that the average length
of a mutation step should be tuneable in order to adapt to the properties of the fitness
landscape [12].
In the following, we will present some mutation operators for real-value as well as combina-
torial search spaces that are used in the remainder of this thesis. The mutation operator can
be applied to object and strategy parameters in a similar way.

3.1.3.1 Real-valued Coding

The mutation operator for optimization problems that are encoded by using real values fre-
quently uses a normal distribution. Within a population not all individuals are mutated but
with a probability of pm. This is an exogenous parameter and must be specified before the
evolutionary process. In most cases, the mutated objective vector ~̃oi is generated by adding
a vector ~z that consists of samples from a normal distribution. Additionally, a standard de-
viation σ, which is also called mutation strength, for all samples is given as an endogenous
strategy parameter. Thus, we can calculate the mutated object vector by:

~̃o = ~o + ~z, with (3.2)
~z = σ(N1(0, 1), . . . ,Nu(0, 1)). (3.3)

In this case, the Ni(0, 1), i ∈ {1, . . . , u} are independent random samples from the standard
normal distribution, see Beyer and Schwefel [12]. This standard normal distribution has the
density function

p(t) =
1√
2π

e−
1
2
t2 . (3.4)

Hence, each component õi has the density function

p(õi) =
1

σ
√

2π
e−

1
2

(õi−oi)
2

σ2 . (3.5)

As the same mutation strength σ is used for all object parameter components, the mutation
is isotropic.
Depending on the characteristics of the search space, a mutation operator that provides dif-
ferent mutation strengths for the different object vector components is beneficial. In this non-
isotropic case, the Evolution Strategy consists of v endogenous strategy parameters instead
of one. As already mentioned, in most cases u = v. Hence, the additive vector is calculated
by:

~z = (σ1N1(0, 1), . . . , σuNu(0, 1)). (3.6)



30 CHAPTER 3. EVOLUTIONARY OPTIMIZATION

As mentioned above, several possible approaches exist to implement the mutation for real-
value optimization problems. In our work, we use the polynomial mutation, see Deb [27, p.124]
and Deb et al. [31], as well. In this case, a polynomial function is applied as the probability
distribution function instead of a normal distribution. Thus, the components of an objective
vector are varied by:

õi = oi +
(
o
(U)
i − o

(L)
i

)
δi. (3.7)

Here, o
(U)
i and o

(L)
i correspond to the upper and lower bound of the values of component i

of the object value. These bounds are exogenous parameters and must be specified before
the optimization process. The parameter δi is calculated for a random variable ri ∈ [0, 1]
(rectangular distribution):

δi =
{

(2ri)1/(ηm+1) − 1, if ri < 0.5
1− [2(1− ri)]1/(ηm+1), if ri ≥ 0.5

. (3.8)

The parameter ηm is problem specific and has to be chosen carefully.
The self-adaptation of the strategy parameter is an important aspect of Evolution Strategy
and has a high influence on the mutation operator. This will be introduced in detail in
Section 3.1.5.

3.1.3.2 Coding as Permutation

The mutation of permutations is not trivial. It must be ensured that at any time the mutation
generates a valid permutation. To this end, we use three elementary operations: move, swap,
and jump. During the mutation of an individual only one of these elementary operations is
applied.

1 2 3 4 5 6 7 8 9

2 1 3 4 5 6 8 7 9

Figure 3.1: The effect of the move mutation operator. Each numbered cell indicates an object
component. Jobs number 2 and 7 are moved.

1 2 3 4 5 6 7 8 9

4 2 3 1 5 6 9 8 7

Figure 3.2: The effect of the swap mutation operator. Each numbered cell indicates an object
component. The jobs 1 and 4 are swapped as well as the jobs 7 and 9. In the first case, the
sampling from the mutation jump length distribution produces the value 3 and in the second
case 2.



3.1. SINGLE-OBJECTIVE EVOLUTIONARY ALGORITHMS 31

1 2 3 4 5 6 7 8 9

1 3 4 5 6 2 7 8 9

Figure 3.3: The effect of the jump mutation operator. Each numbered cell indicates an object
component. Job number 2 jumps 4 positions.

The move operation exchanges a randomly chosen element with one of its neighbors, see
Figure 3.1. The swap operation swaps two arbitrarily chosen entries as displayed in Figure 3.2.
The jump operation moves a randomly selected element of the sequences for a given number
of jobs, see Figure 3.3.
For all three basic operators we use the mutation number (MN) as an endogenous strategy
parameter. As we will show later, this parameter influences the number of basic mutation
operations that are applied to one individual. Furthermore, the distance between jobs during
the swap operation and the distance a job should be moved during the jump operation are
parameterized by the endogenous strategy parameter mutation jump length (MJL). Note
that the direction of the movement of a job within the sequence for all three basic operators
is chosen randomly.
In detail, the number of mutations as well as the distance to move or swap jobs are geomet-
rically distributed as recommended by Rudolph [129] for such permutation problems. The
means of these two distributions are described by the mutation number (MN) and the mu-
tation jump length (MJN). Both endogenous parameters are subject to the self-adaptation
described in Section 3.1.5.
The number of mutations for an individual are calculated by

number of mutations =
⌊

ld(1− ς1)
ld(1− pMN )

⌋
, with (3.9)

pMN = 1− MN

1 +
√

1 + MN2
. (3.10)

The value ς1 is a random variable: ς1 ∈ [0, 1[ (rectangular distribution). Correspondingly, the
number of jobs to move or swap a job (distance) is calculated as

distance =
⌊

ld(1− ς2)
ld(1− pMJL)

⌋
, with (3.11)

pMJL = 1− MJL

1 +
√

1 + MJL2
. (3.12)

Again, the value ς2 is a random variable in the interval of [0, 1[ (rectangular distribution).

3.1.4 Recombination of Object and Strategy Parameters

During the recombination, a new offspring is generated by combining ρ parents. Contrary to
the recombination operator of Genetic Algorithms, the recombination in Evolution Strategies
only produces one offspring. Evolution Strategies normally use the discrete recombination or
the intermediate recombination. Both types are displayed in Figure 3.4.



32 CHAPTER 3. EVOLUTIONARY OPTIMIZATION

a11 a19a18a12 a13 a15a14 a16 a17

a21 a29a28a22 a23 a25a24 a26 a27

a91 a99a98a92 a93 a95a94 a96 a97

…

a11 a19a18a12 a13 a15a14 a16 a17

a21 a29a28a22 a23 a25a24 a26 a27

a41 a49a48a42 a43 a45a44 a46 a47

a11 a29a28a42 a13 a45a24 a46 a17

Discrete Recombination

Intermediate Recombination

3

421 kakaka
ak

++
=

Randomly select 3 of 9 parents

Figure 3.4: Standard (multi-)recombination operators in Evolution Strategies (taken from
Beyer and Schwefel [12]). In this case we assume to have a population of µ = 9 individuals
where ρ = 3 individuals are selected for recombination.

In the following, we denote each individual ~ak as a vector of object and/or strategy of D
parameters: ~ak = (ak1, ak2, . . . , akD).
A discrete recombination first selects ρ from the µ individuals of the current population.
Then, the object vector components at position i, ãki, of the offspring ~̃ak are determined by
randomly selecting one aji, j ∈ 1, . . . , ρ from the selected ρ parents.

(ãk)i = (aj)i, with j randomly in {1, . . . , ρ} (3.13)

The intermediate recombination determines the object vector component ãki of the offspring
~̃ak by averaging the aji values of all ρ selected individuals.

(ãk)i =
1
ρ

ρ∑
j=1

(aj)i (3.14)

The Simulated Binary Crossover (SBX) as described by Deb et al. [28, 31] is uncommon
for standard Evolution Strategies. However, this recombination operator is applied in multi-
objective Evolutionary Strategies. Thus, it will be introduced briefly.
The SBX operator uses ρ = 2 parents to produce two offsprings. Further, an exogenous
parameter ηc ≥ 0 has to be chosen. The higher this value the nearer the offsprings lie beside
one of the parents, see Deb [27, p. 113]. Assuming that we have selected two parent individuals
a1 and a2, we need to apply Algorithm 3.3 for each vector component to generate two offsprings
ã1 and ã2.
In most cases, the discrete recombination is applied to the object parameters whereas the
intermediate recombination is used for the strategy parameters, see Beyer and Schwefel [12].
These three recombination operators directly fit to real-value coded optimization problems.
However, for permutation coded problems the recombination operator is difficult to establish.
In this case, neither the random selection of object vector components nor the averaging of
these components is possible.
For permutation coded approaches, it must be ensured that each element exists exactly once.
In this work we therefore use a different recombination, displayed in Figure 3.5.



3.1. SINGLE-OBJECTIVE EVOLUTIONARY ALGORITHMS 33

Algorithm 3.3 Simulated Binary Crossover (SBX).
Choose a random number ui ∈ [0, 1[ {rectangular distribution}

Calculate β =

 (2ui)
1

ηc+1 , if ui ≤ 0.5(
1

2(1−ui)

) 1
ηc+1

, otherwise.
ã1i = 0.5 [(1 + β)a1i + (1− β)a2i]
ã2i = 0.5 [(1− β)a1i + (1 + β)a2i]

1 2 3 4 5 6 7 8 9

8 3 5 4 9 2 7 1 6

8 3 5 2 4 9 7 1 6

Individual 1

Individual 2

New

Individual 2

Figure 3.5: Recombination of individuals for permutation coded approaches.

In this case, the recombination is restricted to ρ = 2 parents that are randomly selected
over all µ individuals. Then, we select MN components of the object vector of the first
individual. The number of selected components is equivalent to the number of components
that are varied during the mutation operator, that is, we use the same endogenous parameter
MN . The second object vector includes the same elements, as both of these vectors are just
permutations. Hence, the position of the components that are selected in the first object
vector can be determined in the second object vector. The recombination then orders the
determined components in the same order as they occur in the first object vector. Thus, the
recombination operator tries to establish the same sequence of object vector components as
in the first object vector.

3.1.5 Adaptation of Endogenous Strategy Parameters

The success of applying Evolution Strategies is highly connected with the adaptation of
the strategy parameters. This enables the algorithm to react on changing solution spaces.
Especially the mutation operator is influenced by the adaptation of the mutation strength(s) σ
of Equations 3.3 and 3.6. The right setting for these mutation strengths is important for
the success of the Evolution Strategy. Too high mutation strength values lead to the effect
that optima cannot be found as the algorithm is not sensitive enough to search in the near
environment of existing solutions. In contrast to this, if the mutation strength is too low, the
process of reaching optima is very slow and sometimes the process is not able to overcome
local optima. Thus, the mutation strengths need to be adapted corresponding to the local
environment within the search space.
The adaptation of endogenous strategy parameters is not limited to the mutation strengths.
The mutation number of Equation 3.10 and the mutation jump length of Equation 3.12 are
also adapted.

3.1.5.1 The 1/5th Rule

The 1/5th rule was developed by Rechenberg [126] for a (1+1)-Evolution Strategy. This rule
expresses that the mutation strength σ must be adapted according to the success of the last



34 CHAPTER 3. EVOLUTIONARY OPTIMIZATION

mutations.
In detail, the success of the last mutations is counted while the mutation strength σ is constant
for several generations. A mutation is successful if the mutated individuals have better fitness
values compared to the parents. Then, the success probability Ps is calculated by

Ps =
Number of successful mutations

Number of all mutations
. (3.15)

The mutation strength σ is changed according to

σ̃ =


σ/a, if Ps > 1/5
σ · a, if Ps < 1/5
σ, if Ps = 1/5

. (3.16)

Schwefel [134] recommends the use of a value 0.85 ≤ a < 1. Then the mutation strength is
again kept constant for several generations before the adaptation process is restarted.
The 1/5th rule has several disadvantages as it is normally restricted to applications with a
single strategy parameter. Further, it is in most cases only used for (1+1)-Evolution Strategies.

3.1.5.2 Self-Adaptation

The main idea of self-adaptation is the direct combination between object and strategy pa-
rameters. Hence, each individual has its own strategy parameters, see Equation 3.1. The strat-
egy parameters are sometimes recombined and always mutated. Then, the mutation strategy
parameters control the mutation of the individual’s object parameters. As the selection of
individuals is based on their fitness and higher fitness values correspond with better object
vectors that are influenced by their strategy parameters, the probability of individuals with
better strategy parameters to survive the evolution is also higher, see Beyer and Schwefel [12].
The adaptation of the mutation strength σ is realized by multiplying σ by a positive number.
This ensures that the resulting mutation strength σ̃ is also positive.
In general, two different cases are analyzed in the literature. In the first case, a single mutation
strength is used to adapt all object parameters, see Equation 3.3. In the second case, each
object parameter has its own mutation strength, see Equation 3.6.

3.1.5.2.1 Single Mutation Strength (Isotropic Mutation) Schwefel [134] suggest to
use a sample from a normal distribution N (0, 1) and calculating the new mutation strength
σ̃ using the logarithmic normal distribution with the result

σ̃ = σ · eτN (0,1). (3.17)

The exogenous strategy parameter τ is called learning rate and should be set to

τ ∝ 1√
u

(3.18)

for u object parameters, see Beyer and Schwefel [12]. For highly multimodal fitness landscapes,
see Beyer and Schwefel [12], a smaller learning rate should be tried

τ ∝ 1√
2 · u

. (3.19)



3.2. MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS 35

Another even simpler approach is Rechenberg’s two-point rule [127]. In this case, a random
variable r ∈ ]0, 1] is used to calculate the new mutation strength σ̃

σ̃ =

{
σ · α, if r ≤ 0.5
σ/α, if r > 0.5

, α > 1. (3.20)

The parameter α must be chosen individually.

3.1.5.2.2 Mutation Strength Vector (Non-Isotropic Mutation) The basic concept
of adapting the mutation strength can be extended to strategy parameter vectors. The new
strategy parameter vector ~̃sk = ~̃σ = (σ̃1, . . . , σ̃u) (assuming u = v) is calculated by

~̃σ = eτ0N (0,1) ·
(
σ1 · eτ1N1(0,1), . . . , σu · eτ1Nu(0,1)

)
. (3.21)

In this case, each mutation strength is mutated individually and the resulting strategy para-
meter vector is scaled by a random factor. Note that the general term eτ0N (0,1) is determined
once for all individuals of a generation by sampling the normal distribution N (0, 1). Contrary,
all normal distribution samples Ni(0, 1), i ∈ {1, . . . , u} (remember that we assume u = v), are
determined separately for each individual. Beyer and Schwefel [12] claim that ”this technique
allows for learning axes-parallel mutation ellipsoids”. The two exogenous learning rates τ0

and τ1 should be set to

τ0 =
1√
2 · u

, and τ1 =
1√
2
√

u
. (3.22)

3.2 Multi-Objective Evolutionary Algorithms

In this section, the concept of using single-objective Evolutionary Algorithms to solve opti-
mization problems with a single-objective is extended to the optimization of multi-objective
problems. As described in Section 2.5, the development of scheduling strategies has to in-
corporate multiple objectives. The goal during the multi-objective optimization process is to
find as many Pareto optimal solutions as possible. Further, those solutions should be spread
over a wide area of the solution space. Thus, the goal of the multi-objective optimization
is to solve problems with the objective #(Z1, Z2, . . . , Zk) as defined in Section 2.5.1. The
classical approaches, presented in Section 2.5.4, have several disadvantages. First, they can
only generate one solution at a time. Second, they need some pre-defined weights or ε-values
for the optimization process. However, those parameters are unknown and may lead to a bad
approximation of the Pareto front. Further, the usage of such parameters in fact transforms
the multi-objective problem into a single-objective problem.
Multi-objective Evolutionary Algorithms use a population of individuals each representing a
solution. Hence, multiple potential Pareto optimal solutions are included within a population.
In contrast to the classical methods that result in a single solution, the whole optimization
process generates an approximation of the Pareto front. Furthermore, multi-objective Evo-
lutionary Algorithms do not require the definition of weights which leads to a more robust
generation of the Pareto front.
All non-dominated solutions are processed in the same way by using Multi-objective Evolu-
tionary Algorithms. So, they do not assume any prioritizations of individual simple objectives.
Further, they gradually move the population towards the Pareto front.



36 CHAPTER 3. EVOLUTIONARY OPTIMIZATION

Zitzler et al. [167] present the major problems that must be addressed when multi-objective
Evolutionary Algorithms are applied:

• How to accomplish fitness assignment and fitness selection in order to guide the search
towards the Pareto optimal set (convergence)?

• How to maintain a diverse population in order to prevent premature convergence and
achieve a well distributed trade-off front (coverage)?

Several multi-objective Evolutionary Algorithms have been published, see, for example, the
collection by Deb [27]. They are often divided into two main groups. The first group consists
of non-elitist algorithms where the selection operator does not ensure that non-dominated
solutions are transferred to the next generation. The second group describes all elitist al-
gorithms that enforce the transmission of non-dominated solutions to the next generations.
Both groups will be presented in the following as our scheduling strategy development will
use both attempts.

3.2.1 Non-Elitist Multi-Objective Evolutionary Algorithms

Non-elitist algorithms do not ensure that the best individuals of the current population par-
ticipate in the next generation. However, the probability for a good individual to survive the
selection procedure is higher than for individuals with a low fitness.
Several different non-elitist algorithms have been proposed to generate the Pareto front. Ex-
amples are the Vector Evaluated Genetic Algorithm (VEGA) by Schaffer [132] which was
the first multi-objective Evolutionary Algorithm. Other approaches are the Vector-Optimized
Evolution Strategy (VOES) by Kursawe [95], the Weight-Based Genetic Algorithm (WBGA)
by Hajela and Lin [72], the Random Weighted Genetic Algorithm (RWGA) by Murata and
Ishibuchi [113], the Multiple Objective Genetic Algorithm (MOGA) by Fonseca and Flem-
ing [61], the Niched-Pareto Genetic Algorithm (NPGA) by Horn et al. [81], the Predator-Prey
Evolution Strategy by Laumanns [97], and the Non-dominated Sorting Genetic Algorithm
(NSGA) by Srinivas and Deb [150].
The NSGA algorithm has proven to be a powerful multi-objective Evolutionary Algorithm
which is easy to use. It is used as our first approach of generating the Pareto front. Thus, we
present this algorithm in more detail.

3.2.1.1 Non-Dominated Sorting Genetic Algorithm (NSGA)

The Non-dominated Sorting Genetic Algorithm (NSGA) varies from a simple Evolutionary
Algorithm only in the way the selection operator is used to direct the search to the Pareto
front while maintaining a high diversity of the generated solutions within the population. The
recombination and mutation operators remain as usual.
Algorithm 3.4 describes the whole NSGA algorithm. First, µ initial individuals are randomly
generated and further evaluated for each of the k objective functions fi, i ∈ {1, . . . , k}. Then,
the fitness of each individual is calculated (see Algorithm 3.5). This procedure incorporates
the non-domination level of the individuals and their corresponding diversity. In the following,
the evolutionary loop is started for a fixed number of generations.
Within this loop a fitness proportional selection, see Section 3.1.2, is used to generate λ indi-
viduals. Then, the strategy parameters of the individuals are mutated by using Rechenberg’s



3.2. MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS 37

Algorithm 3.4 Non-Dominated Sorting Genetic Algorithm (NSGA).
P0,µ ← initialization, P0,µ ∈Mµ(I);
for (i = 1 to k) do

P0,µ ← evaluate objective function fi;
end for
P0,µ ← NSGA fitness assignment {See Algorithm 3.5};
t← 0;
for (t = 0 to (Number of Generations - 1)) do

P ′
t,λ ← fitness proportional selection(Pt,µ), P ′

t,λ ∈Mλ(I);
P ′′

t,λ ← two point mutation of strategy parameters(P ′
t,λ), P ′′

t,λ ∈Mλ(I);
P ′′′

t,λ ← recombination of object parameters(P ′′
t,λ), P ′′′

t,λ ∈Mλ(I);
P ′′′′

t,λ ← mutation of object parameters(P ′′′
t,λ), P ′′′′

t,λ ∈Mλ(I);
for (i = 1 to k) do

P ′′′′
t,λ ← evaluate objective values fi;

end for
P ′′′′

t,λ ← NSGA fitness assignment {See Algorithm 3.5};
P(t+1),µ ← select(P ′′′′

t,λ), P(t+1),µ ∈Mµ(I);
t← t + 1;

end for

two-point rule, see Section 3.1.5.2.1. In the following, the individuals are in some cases re-
combined and always mutated. Subsequently, the modified individuals within the population
are evaluated by using all k objective functions and the NSGA fitness assignment procedure
is used to determine the individual’s fitness values, see Algorithm 3.5. Next, the NSGA al-
gorithm selects the µ best individuals from all modified individuals to become the parents
of the next generation. As NSGA only uses the modified individuals, the whole procedure is
non-elitist.
The presented main structure of the NSGA does not specify the fitness assignment of indi-
viduals. This fitness assignment uses dominance levels and the contribution of individuals to
the diversity of the overall population. Algorithm 3.5 describes this fitness assignment. By
F (a) we denote the fitness of individual a. The k objective function values of individual a are
denoted by fi(a) for k ∈ {1, . . . , k}. First, a small positive number ε must be chosen. Then,
the default fitness level Fmin is set to the number of individuals λ plus ε. Next, the current
population Pt is divided into Υ subsets that are mutually non-dominated by using Definition 2
(on page 16). Thus, the subset P

(1)
t is the Pareto front of Pt and rank 1 is assigned to this

subset. P
(2)
t is the Pareto front of Pt\P (1)

t with rank 2. The same concept is applied to all
following subsets. Within the resulting subsets each solution from a subset with a higher rank
is dominated by at least one solution of every lower ranked subset. The solutions within one
subset are preferable compared to solutions with higher rank numbers (remember that rank
1 consists of the best solutions). Figure 3.6 shows an example of such a ranking of the various
solutions. Furthermore, the selection process needs a differentiation between solutions within
the same subset. Thus, the contribution to the population’s diversity is used to distinguish
between those solutions.
In detail, the algorithm starts at rank 1 and processes each rank separately until the last
rank Υ is reached. For all individuals a the dummy fitness F r is assigned which is the lowest
fitness of the lower ranks decreased by the chosen ε. Then the niche count for each individual is



38 CHAPTER 3. EVOLUTIONARY OPTIMIZATION

Rank 1

f
1

f
2

Rank 2

Rank 3

Figure 3.6: Illustration of the non-dominated sorting procedure. The specified rank is assigned
to the solutions by the non-dominated sorting.

Algorithm 3.5 NSGA Fitness Assignment.
Choose a small positive number ε;
Fmin = λ + ε;
Classify population Pt according to non-domination:

(
P

(1)
t , P

(2)
t , . . . , P

(Υ)
t

)
= Sort (Pt,�p)

{We assume that Υ fronts exist};
for (j = 1 to Υ) do

FnewMin = Fmin;
for all (a ∈ P

(j)
t ) do

Assign rank fitness F r(a) = Fmin − ε;
Calculate niche count nca among solutions of P

(j)
t only; {See Algorithm 3.6.}

Calculate fitness F (a) = F r(a)
nca

;
FnewMin = min(F (a), FnewMin);

end for
Fmin = min(FnewMin, Fmin);

end for

calculated. The smaller this niche count the higher the contribution of the particular individual
to the diversity of the overall population. Hence, the previously assigned dummy fitness
is adjusted with this niche count nca of each individual a. After the fitness values of all
individuals in the current subset are determined, the lowest fitness is readjusted.
The calculated fitness values can then be used for the selection process of the NSGA algorithm,
see Algorithm 3.4. The last detail, namely the calculation of the niche count nc, is presented
next. The original work by Srinivas and Deb [150] uses a concept of calculating distances
between solutions that are filtered by a pre-defined σshare value. Only if the distance between
the solutions is smaller than this value, the pair is used to calculate the niche count. However,
this value σshare is critical as it is problem dependent. Hence, we exchanged this method to
calculate the niche count and used the method by Laumanns [96] that does not require any
pre-defined values. Algorithm 3.6 presents the main idea behind this approach. However, here
we will not describe this procedure in detail. For further information, see Laumanns [96].

3.2.2 Elitist Multi-Objective Evolutionary Algorithms

The second category of multi-objective Evolutionary Algorithms consists of all elitists meth-
ods. Here, several possible approaches have been published. These are Rudolph’s Elitist



3.2. MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS 39

Algorithm 3.6 Laumann’s niche count estimator, see Laumanns [96].
Part I: Compute niche radius q
minNiches = k {k is the number of objectives};
maxNiches = λ {λ is the number of individuals};
niches = b(maxNiches− 0.5 · (maxNiches−minNiches)) + 0.5c;
divisions =

⌊(
(niches/k)1/(k−1)

)
+ 0.5

⌋
;

h = 0 {h is a help variable};
for (i = 1 to k) do

Vl = lowest value of all individuals regarding objective fi;
Vh = highest value of all individuals regarding objective fi;
h = h + ((Vh − Vl)/divisions)2;

end for
q =
√

h;
Part II: Compute niche count nc of individuals
for (j = 1 to λ) do

d = 0;
for (l = 1 to λ) do

if (|~f(j)− ~f(l)|/q < 1) then
d = d + 2π(1− (|~f(j)− ~f(l)|/q)2) {| · | specifies the Euclidean Distance.}

end if
end for
ncj = d/(λ/qk)

end for

Multi-Objective Evolutionary Algorithm [130], the Distance-Based Pareto Genetic Algorithm
(DPGA) by Osyczka and Kundu [118], the Strength Pareto Evolutionary Algorithm (SPEA2)
by Zitzler et al. [169], the Termodynamical Genetic Algorithm by Kita et al. [92], the Pareto-
Archived Evolution Strategy (PAES) by Knowles and Cornes [93], the Multi-Objective Messy
Genetic Algorithm (mGA) by Veldhuizen and Lamont [160], the S metric selection Evolu-
tionary Multi-Objective Evolutionary Algorithm (SMS-EMOA) by Emmerich et al. [39], the
Elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II) by Deb at al. [29], and the
Indicator Based Evolutionary Algorithm (IBEA) by Zitzler and Künzli [168].
In our work we have used the NSGA-II algorithm as this extends the main ideas of NSGA.
However, the IBEA algorithm has proven to work better than NSGA-II on most multi-
objective problems. Unfortunately, IBEA was published after we applied NSGA-II to our
scheduling problem and hence IBEA has not been used. In the following, we will present the
main concept of NSGA-II.

3.2.2.1 Elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II)

The non-elitist NSGA Algorithm, see Section 3.2.1.1, has three major disadvantages. First,
the non-dominated sorting of NSGA has a complexity of O(kµ3), where k objectives and
µ individuals are used (see Deb et al. [29]). Second, the algorithm is non-elitist and hence
might loose good solutions. Third, the original procedure to calculate the niche count needs
a pre-defined parameter σshare (we have exchanged this method already).
The further development of NSGA-II uses a fast non-dominated sorting procedure with com-



40 CHAPTER 3. EVOLUTIONARY OPTIMIZATION

Algorithm 3.7 Elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II).
P0,µ ← initialization, P0,µ ∈Mµ(I);
for (i = 1 to k) do

P0,µ ← evaluate using objective function fi;
end for
Assign ranks to all individuals of population P0,µ according to non-domination;
P ′

0,λ ← binary tournament selection based on the rank(P0,µ), P ′
0,λ ∈Mλ(I);

P ′′
0,λ ← recombination(P ′

0,λ), P ′′
0,λ ∈Mλ(I);

Q0,λ ← mutation(P ′′
0,λ), Q0,λ ∈Mλ(I);

for (i = 1 to k) do
Q0,λ ← evaluate using objective functionfi;

end for
t← 0;
for (t = 0 to (Number of Generations-1)) do

Rt,µ+λ = Pt,µ ∪Qt,λ;
Classify population Rt,µ+λ according to non-domination:(
R

(1)
t , R

(2)
t , . . . , R

(Υ)
t = Sort(Rt,µ+λ,�p

)
{We assume Υ fronts exist};

P(t+1),µ = ∅;
c = 1;
while ((|P(t+1),µ|+ |R

(c)
t | ≤ µ)) do

crowding distance assignment(R(c)
t ) {see Algorithm 3.8};

P(t+1),µ = P(t+1),µ ∪R
(c)
t ;

c = c + 1;
end while
Sort(R(c)

t ,�n) {sort by crowded comparison operator, see Algorithm 3.9};
P(t+1),µ = P(t+1),µ ∪R

(c)
t [1 : (µ− |P(t+1),µ|)] {the best (µ− |P(t+1),µ|) elements of R

(c)
t };

P ′
(t+1),λ ← binary tournament selection(P(t+1),µ), P ′

(t+1),λ ∈Mλ(I);
P ′′

(t+1),λ ← mutation of strategy parameters(P ′
(t+1),λ), P ′′

(t+1),λ ∈Mλ(I);
P ′′′

(t+1),λ ← recombination(P ′′
(t+1),λ), P ′′′

(t+1),λ ∈Mλ(I);
Q(t+1),λ ← mutation(P ′′′

(t+1),λ), Q(t+1),λ ∈Mλ(I);
for (i = 1 to k) do

Q(t+1),λ ← evaluate using objective function fi;
end for
t← t + 1;

end for



3.2. MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS 41

Algorithm 3.8 NSGA-II Crowding distance assignment procedure for set R.
Γ = |R| {We assume Γ individuals in set R};
for all (i ∈ R) do

R[i]distance = 0 {for each individual i set the crowding distance to 0};
end for
for (o = 1 to k) do

Sort R according to increasing objective function fo: (R[1fo ], R[2fo ], . . . , R[Γfo ]) =
Sort(R, o);
V max

fo
= R[Γfo ]fo ;

V min
fo

= R[1fo ]fo ;
R[1fo ]distance = R[Γfo ]distance =∞ {first and last element have distance ∞};
for (j = 2 to (Γ− 1)) do

R[jfo ]distance = R[jfo ]distance + R[(j−1)fo ]fo−R[(j+1)fo ]fo

V max
fo

−V min
fo

;

end for
end for

plexity O(kµ2), see Deb et al. [29]. Further, a plus strategy is used that ensures that the
best individuals survive the selection process. Moreover, a combined ranking and crowding
distance approach is used to ensure the diversity of the individuals within the population.
Hence, it is not necessary to pre-define any parameters.
Algorithm 3.7 presents the main idea of NSGA-II. Initially, a random population P0,µ is
generated and then evaluated using all k objectives. Next, all individuals are ranked according
to the non-domination, see Definition 2 (on page 16). Subsequently, the binary tournament
selection, see Section 3.1.2, followed by recombination and mutation is applied to generate the
first child population Q0,λ. This child population is evaluated by again using all k objectives.
Following, the main loop for a pre-defined number of generations is started. Within this
loop, the parent and child populations are combined to Rt,µ+λ. This combined population is
classified into Υ fronts using Definition 2. This concept is displayed in Figure 3.6. Then, the
next parent generation P(t+1),µ is generated by selecting the best individuals of Rt,µ+λ that

is choosing all individuals from R
(c)
t for increasing c as long as the number of individuals in

P(t+1),µ is smaller than or equal to µ. Furthermore, for all individuals the crowding distance,
see Algorithm 3.8, is calculated. Within this algorithm we denote by R[i]distance the crowding
distance of the i-th individual of the given set R. Further, we specify by R[i]fo the objective
function value of individual i regarding function fo.
If the number of individuals in the last R

(c)
t , in Algorithm 3.7, is larger than µ−|P(t+1),µ| the

individuals of R
(c)
t are sorted by using the crowded comparison operator, see Algorithm 3.9.

Next, the best µ − |P(t+1),µ| individuals, regarding the crowded comparison operator, are
added to P(t+1),µ.
Subsequently, the child generation Q(t+1),λ is generated by applying a binary tournament
selection, mutating the strategy parameter, recombining the parent individuals, and mutating
the outcomes. At the end, this child generation is again evaluated by using all k objective
functions. Then, the next iteration of the loop is started.
The main differences between NSGA and NSGA-II are the crowding distance assignment and
the comparison operator �n. The crowding distance uses the cuboid around each solution, see
Figure 3.7. The solutions with the biggest cuboids have the highest impact on the diversity



42 CHAPTER 3. EVOLUTIONARY OPTIMIZATION

i-1

i

i+1 1

f
1

f
2

Cuboid

Figure 3.7: Illustration of the crowding distance sorting of members on the Pareto front. The
circumference of the box touching neighboring solutions is the ranking criterion. Note that
extremal solutions are always preferred to non-extremal solutions.

of the population and hence get a higher fitness. Furthermore, the extreme solutions always
receive a high fitness as they reflect the explored solution space.
In detail, the crowding distance assignment procedure is shown in Algorithm 3.8. For each
objective function fo, o = 1 to k, the individuals of a current set are sorted. The first and the
last individual of the sorted set receive a very high crowded distance value as they generate
a high diversity of the given set. All individuals j in between calculate the distance of the
neighboring individuals (j−1) and (j+1) regarding the objective o. This distance is normalized
by the maximum distance between two individuals within the given set, regarding fo. The
resulting value is added to the crowding distance value of individual j.
As the crowding distances are summed up for all given objectives k the resulting sum for each
individual reflects its contribution to the diversity of the whole set. The rank corresponding to
the non-domination definition together with this crowding distance is used to sort individuals.
The resulting operator is called the crowded comparison operator �n.

Algorithm 3.9 NSGA-II Crowded Comparison Operator �n for two individuals a1 and a2.
a1,rank denotes the rank of i;
a1,distance denotes the crowding distance, see Algorithm 3.8;
if (a1,rank < a2,rank) then

a1 �n a2

else if (a2,rank < a1,rank) then
a2 �n a1

else if (a1,distance > a2,distance) then
a1 �n a2

else
a2 �n a1

end if

This operator is given in detail in Algorithm 3.9. For two individuals of a population a1 and
a2, the individual with the lower rank has a higher fitness. If both individuals share the same
rank, the individual with the higher crowding distance is preferred. This operator is used
to select the individuals to form the next parent population within the evolutionary loop in
Algorithm 3.7.



Chapter 4

Parallel Job Scheduling

The general problem of scheduling high performance parallel computers was already intro-
duced in Chapter 1. Hence, this chapter will not repeat the general problem structure but
present the state of the art of scheduling on Massively Parallel Processors (MPP).
The scheduling system is an important component of a parallel computer. Here, the applied
scheduling strategy has direct impact on the overall performance of the computer system with
respect to the scheduling policy and objective. For example, the number of idle resources could
be reduced and furthermore the systems utilization and job throughput could be increased.
The increase in efficiency can be compared with saving additional hardware.
As the scheduling component within massively parallel processors highly influences the over-
all system performance, the machine providers are often involved in the development process
of better working algorithms, see Krallmann et al. [94]. Contrary, the manufacturers of such
massively parallel systems show only a limited interest in the development of new schedul-
ing algorithms. In most cases they argue that the customers only buy their systems as the
integrated hardware is very powerful. Nevertheless, the machine providers are still not satis-
fied with the existing scheduling algorithms. Therefore, the research within this area is still
ongoing and growing.
In the following, the scheduling environment will be specified in detail. This is followed by
the introduction of scheduling algorithms that are nowadays used at real installations.

4.1 Machine Environment

Existing massively parallel processor installations differ in the available hardware. However,
most systems consist of several computational nodes with one or more processors, main mem-
ory and a local hard disc. A collection of the most powerful systems in 2004 can be found by
Ernemann et al. [45].
As the development of the underlying scheduling system is mainly independent of the real
hardware specifications of individual computational nodes, we assume in this work m parallel
identical nodes. All nodes inside a machine are connected with a fast interconnection network
that does not favor any communication pattern inside the machine. This means that a parallel
job can be allocated on any subset of nodes of a machine. This comes reasonably close to
real systems like an IBM RS/6000 scalable parallel computer, a Sun Enterprise 10000, or an
HPC cluster. Furthermore, all nodes support space-sharing and run the jobs in an exclusive
fashion.

43



44 CHAPTER 4. PARALLEL JOB SCHEDULING

Many real systems use resource partitions in order to provide different services for different
users. In such environments, some user groups can only access a limited partition of the whole
system, see, for example, Feitelson et al. [58]. This implements some kind of prioritization.
However, partitions normally decrease the overall system performance, see Feitelson [55]. We
therefore assume that all nodes can be used by all users in any combination. The scheduling
algorithm itself has to implement the local prioritization scheme.

4.2 System Characteristics

The scheduling system at massively parallel computers has to establish node allocations for
computational jobs of the job system τ . Within this online scenario, different users are sub-
mitting jobs j ∈ τ over time. The release date rj ≥ 0 of job j is not known in advance. This
is denoted by r̄j . Additionally, the processing time pj > 0 is unknown. The users only provide
a rough estimate p̄j for pj . In practice, this estimate is used to cancel job j if pj > p̄j , i.e.
if the actual execution length of job j exceeds the estimate. In order to make sure that a
job without errors is not cancelled just before its completion, users tend to overestimate the
execution time [98]. Therefore, p̄j is of limited help for the purpose of schedule prediction
unless users gain a benefit from a correct estimate. As the release and processing times are
unknown, the problem is often classified as non-clairvoyant online scheduling, see Motwani et
al. [110].
Further, job j requires the concurrent and exclusive availability of mj ≤ m nodes during the
whole execution time. The number of required nodes mj is specified by the users and does
not change during the execution. Therefore, those jobs are classified as rigid, see Feitelson
et al. [58]. As the network does not favor any subset of nodes, the execution time pj is
invariant of the subset of mj nodes allocated to j. Each node is used by at most one job
at any time (space-sharing). Note that a time-sharing of nodes within a massively parallel
processor system is not used, as many jobs require a large amount of memory. In case of a
time-sharing, this would result in memory swapping. Therefore, all jobs j ∈ τ with pj ≤ p̄j

run to completion, that is, we do not allow any preemption [106, 105]. The completion of
job j in schedule S is denoted by Cj(S). Contrary to other online scheduling models, see e.g.
Albers [2], we do not require that machines must be allocated to a job at time rj . Instead, the
scheduler decides just before the start time Cj(S) − pj which machines are used to execute
job j. In practice, this scheduling model is used in many parallel computers [82, 111], like, for
instance, the IBM SP2.

4.3 Scheduling Policy and Objective

Local scheduling policies highly depend on the specific local environments. For example,
some systems only require a high system utilization. Other installations might prefer a short
response time for some user groups while delaying the jobs of all other users. The goal of a
higher system utilization is implemented in all current systems. That is, machines are not
left idle while some jobs are waiting for execution that fulfill all scheduling constraints to be
immediately started. By this, all nowadays systems generate nondelay schedules as introduced
in Section 2.2.
So far, the prioritization of certain users or user groups is implemented by using certain system
partitions, see Feitelson and Jette [55], or special job queues, see Talby and Feitelson [154].



4.3. SCHEDULING POLICY AND OBJECTIVE 45

Within such systems users are only allowed to submit jobs to these job queues. Furthermore,
the jobs from those job queues can only be started within pre-defined system partitions. Hence,
it is possible to assign a larger partition to preferred user groups. However, as already stated,
this normally results in a waste of available resources [55]. Another method to implement
some kind of prioritization is the usage of quotas at real installations. In such environments,
the amount of processing time for individual users can be limited. This ensures that the
available machines can be used by groups with a higher priority. However, in some cases, the
machines are left idle even if some jobs are waiting for execution as the corresponding quotas
are reached [55]. Within this thesis, neither partitions nor quotas will be used. The whole
scheduling system only consists of a single job queue in which all users submit their jobs.
The scheduling algorithms that are implemented in nowadays scheduling systems for parallel
computers mainly try to minimize the makespan Cmax = max

j∈τ
Cj for a given job system τ .

Additionally, the applied algorithms use job queues that lead to some kind of fairness that
prevents job starvation. Therefore, existing scheduling systems for massively parallel processor
systems can be classified as Pm|r̄j , p̄j ,mj |Cmax. In Chapter 6, we will extend those systems
to incorporate multiple objectives.
The development of new scheduling algorithms focuses more on the users of such machines.
This is reasonable as the users tend to choose other parallel computers for their tasks if the
local system does not calculate the computational jobs in an appropriate time. Therefore, the
machine providers need to incorporate those objectives as a migration of local users reduces
their profit. The list of possible evaluation objectives from the users’ point of view is long.
However, most of those objectives are somehow correlated.
For our evaluation, we have chosen the utilization of the parallel computer and the average
weighted response time for all jobs j ∈ τ as the main objectives. Several other objectives like
the slowdown or the average weighted wait time can easily be derived from them. Most of the
evaluation objectives use some kind of weighting to specify the influence of different jobs on
the result. Accounting to Schwiegelshohn et al. [139], a job weight should be used that reflects
the resource consumption RCj = pj ·mj of the job j. This weight selection ensures that neither
a splitting of jobs into several sequential jobs nor a combination of several independent jobs
to a single job is beneficial regarding the objective function. Subsequently, those objectives
are presented in detail.
The utilization (UTIL) of the parallel computer after having completed all jobs j from a
given job system τ can be calculated as defined in Equation 4.1. The utilization is calculated
beginning with the earliest job start time (min

j∈τ
{Cj(S) − pj}) and ending with the latest

completion time (max
j∈τ

Cj(S)). The utilization objective describes how effectively the available

machines are used. Therefore, it reflects mainly the machine provider point of view.

UTIL =

∑
j∈ τ

pj ·mj

m ·
(

max
j∈τ
{Cj(S)} −min

j∈τ
{Cj(S)− pj}

) (4.1)

The second objective is the average weighted response time (AWRT) over all jobs of all users
as defined in Equation 4.2. Note that the jobs are weighted by the previously defined resource
consumption. A short AWRT describes that in average the users do not wait long for their
jobs to complete. Therefore, this objective highly reflects the users’ point of view.



46 CHAPTER 4. PARALLEL JOB SCHEDULING

AWRT =

∑
j∈τ

pj ·mj · (Cj(S)− rj)∑
j∈τ

pj ·mj
(4.2)

The average weighted wait time (AWWT), as defined in Equation 4.3, is also frequently
used during the evaluation of scheduling systems. Here, the same weight is applied as for the
average weighted response time. Both objectives are highly correlated as they only differ in
the processing times of all jobs. However, some algorithms that will be presented in Section 4.4
require a certain amount of computation that is waiting for execution. Hence, the average
weighted wait time is often used to prove that the resource consumption of all waiting jobs
is sufficiently large.

AWWT =

∑
j∈τ

pj ·mj · (Cj(S)− pj − rj)∑
j∈τ

pj ·mj
(4.3)

In Chapter 6, we will extend the presented objective function definitions to emphasize user
group dependent goals.

4.4 Scheduling Algorithms

As noted in Section 2.6.3 the scheduling algorithm is responsible for generating a valid sched-
ule. The nowadays applied scheduling algorithms for massively parallel processor systems are
rather simple. Most of them use a single job queue that holds all released jobs ordered by
their submission time. Note that all jobs can be started directly after submission. Hence, the
submission and the release times are identical. Whenever a new job is released or another job
finishes execution, a scheduler tries to start jobs from the waiting queue on the currently idle
nodes. The various scheduling algorithms for parallel computers mainly differ in the way the
jobs are picked from the waiting queue. In the following, four different algorithms in increasing
order of algorithmic complexity will be presented that are used as references in the remainder
of this work. Note that the first three algorithms use a statically sorted waiting queue while
the last algorithm dynamically reorders this queue.

4.4.1 First Come First Serve (FCFS)

FCFS starts the first job of the waiting queue whenever enough idle resources are available.
Hence, this algorithm has a constant complexity as the scheduler always only tests whether
the first job can be started immediately if a job in the schedule has completed its execution
or a new job is on top of the waiting queue.
This algorithm ensures that no job is started after any later released job. Furthermore, this
method does not require any estimations of job processing times. The application of First
Come First Serve leads to a very low resource utilization in the worst case scenario, see,
for example, Turek et al. [157]. However, for realistic workloads FCFS produces acceptable
results, e.g. Ernemann et al. [47].



4.5. EVALUATION 47

4.4.2 List Scheduling

List Scheduling as introduced by Graham [69] is not applied in this work. However, it serves as
the basic concept for the two backfilling variants. By applying List Scheduling, the scheduler
tries to find the first job within the waiting queue that can be started on the currently idle
machines. Again, the algorithm uses the sorted queue. The complexity is higher than in the
case of FCFS as in the worst case the whole queue is tested each time the scheduling procedure
is initiated.

4.4.2.1 EASY Backfilling

EASY (Extensible Argone Scheduling System) is similar to the original List Scheduling.
However, if the first job within the waiting queue cannot be started immediately, the algorithm
estimates the completion time of this job. To this end, a runtime estimation provided by the
user is needed. Then, EASY tries to bring forward some jobs of the waiting queue by starting
them on the currently idle machines while ensuring that the first job is not further delayed,
see Lifka [99]. This algorithm requires more computational time than List Scheduling, as the
scheduler needs to estimate the processing of the first job in case it cannot be started directly.

4.4.2.2 Conservative Backfilling (CONS)

Conservative Backfilling extends the concept of EASY. Here, the scheduler tries to find the
next job within the waiting queue that can be started immediately while ensuring that no
previous job within the queue is further delayed, see Mu’alem et al. [111]. This results in a
much higher complexity of the scheduling algorithm as in the worst case, the completion time
of all jobs within the waiting queue except of the last job must be estimated each time the
scheduling process is initiated. Note that in both backfilling strategies the completion time of
some jobs may increase compared to FCFS as in the online scenario some jobs have a shorter
processing time than estimated by the users.

4.4.3 Greedy Scheduling (Greedy)

Greedy uses a dynamically sorted waiting queue contrary to the already introduced scheduling
algorithms. To this end, the algorithm defines a complex sorting criterion. Each time the
Greedy scheduling process is started, the queue is sorted according to this function. Then, a
simple FCFS is applied. The complexity of this algorithm can be high as the calculation of
the sorting criterion for each job within the waiting queue may be computationally expensive.
Furthermore, the necessary sorting of all jobs has to be taken into account. Greedy provides
the advantage to specify user or user group dependent preferences within the complex sorting
criterion.

4.5 Evaluation

The evaluation of scheduling algorithms is important to identify the appropriate algorithms
and the corresponding parameter settings. The results of theoretical worst-case analysis are
often only of limited help as typical workloads on production machines do normally not
exhibit the specific structure that will create a really bad case, see Section 2.3. In addition,
theoretical analysis is often difficult to apply to scheduling strategies. Theoretical analysis of



48 CHAPTER 4. PARALLEL JOB SCHEDULING

random workloads will also not provide the desired information as the job parameter values
are not distributed randomly, see e.g. Feitelson and Nitzberg [56]. Instead, the job parameters
depend on several patterns and relations.
A trial and error approach on a commercial machine is tedious and significantly affects the
system performance. Thus, it is usually not practicable to use a production machine for
the evaluation except for the final testing. This just leaves simulation for all other cases.
Simulations may either be based on real trace data or on a workload model. We will therefore
discuss both possible approaches in detail.

4.5.1 Workload Models

Many existing approaches on workload modelling for massively parallel computers mainly
focused on methods that use statistical distributions to fit the overall workload characteristics,
see, for example, Lublin et al. [103] or Cirne et al. [21].
Generally, such statistical models use distributions or a collection of distributions to describe
the important features of real workload attributes and the correlations among them. Then
synthetic workloads are generated by sampling from the probability distributions, e.g. Jann
et al. [84] or Feitelson [52]. Such statistical workload models have the advantage that new sets
of job submissions can be generated easily. The consistence with real traces depends on the
knowledge about the different examined parameters in the original workload. Many factors
contribute to the actual process of workload generation on a real system. Some of them are
known, some are hidden and hard to deduce. For example, it is difficult to find rules for job
submissions by individual users. The analysis of workloads shows several correlations and
patterns of the workload statistics. For example, jobs on many parallel computers require
job sizes of a power of two, see Lo et al. [102], Feitelson [50], Lublin et al. [103], and Song
et al. [148]. Other examples are the job distribution during the daily cycle obviously caused
by the individual working hours of the users, or the job distribution of different week days,
see Ernemann et al. [47]. Most approaches consider the different statistical moments isolated.
However, it is very difficult to identify whether the important rules and patterns are extracted.
In the same way it is difficult to tell whether the inclusion of the result is actually relevant
to the evaluation and therefore also relevant for the design of an algorithm.
Besides the isolated modelling of each attribute, the correlations between different attributes
were addressed as well. Lo et al. [102] demonstrated how the different degrees of correlation
between job size and job runtime might lead to discrepant conclusions about the evaluation
of scheduling performance. To consider such correlations, Jann et al. [84] divided the job sizes
into subranges and then created a separate model for the inter-arrival time and the service
time in each range, which may have a risk of over-fitting too many unknown parameters.
Furthermore, Lublin et al. [103] considered the runtime attribute according to a two-stage
hyper-gamma distribution with a linear relation between the job size and the parameters of the
runtime distribution so that the longer runtime can be emphasized by using the distribution
with the higher mean. Although these models can provide an overall description of a workload,
they cannot give a deeper insight into the individual job submission behavior. In general, the
global and summarized characterization does not provide a model for users or user groups
and thus cannot give hints to relate the performance metrics to user groups.
In order to integrate additional characteristics into the workload models, some research
projects focused on the sequential dependencies between jobs. For example, Feitelson et al. [50]
showed that users tend to submit jobs which are similar to their predecessors. Therefore,



4.5. EVALUATION 49

more realistic models are needed which incorporate the correlation within the sequence of
job submissions. Hence, Song et al. [147] have analyzed job dependencies in more detail. The
resulting workload model incorporates temporal dependencies and the correlation between
job parameters. To this end, individual Markov chains have been created for runtime and
node requirements of jobs. The correlation between job parameters requires the combination
of such individual Markov chains. To this end, a novel approach of transforming the states in
the different Markov chains has been proposed. With this model the sequential dependencies
of jobs regarding the node requirements and the actual runtimes can be described. However,
the model neither includes the release times of individual jobs nor a relation between jobs
and individual users or user groups.
Consequently, Song et al. [148] generated a workload model that is based on individual user
groups. The particular generation of a workload model is based on a specific existing workload
from a real system. To this end, jobs are first partitioned into clusters such that the jobs with
similar characteristics are placed in the same cluster. Then the users are grouped by the
contribution of their submission into these job clusters. The output of this user group model
has been statistically compared with original and not-used reference workloads.
Although such complex workload models were generated, most of the evaluations of scheduling
algorithms nowadays use workload traces from real existing parallel computers. This results
from the limited complexity of existing models. A precise evaluation requires the availability
of a model that incorporates all relevant characteristics and dependencies of the jobs like the
release date, the estimated processing time, the real processing time, and the node require-
ments. So far, none of the available workload models can fulfill all of these requirements.

4.5.2 Workload Traces

For the above mentioned reasons it is difficult to use statistical workload models for our re-
search work. Therefore, real workload traces have been used. The standard parallel workload
archive, see Feitelson [54] and Table 4.1, is a source for job traces of massively parallel proces-
sor systems. In comparison to statistical workload models, the use of actual workload traces
is simpler as they inherently include all submission patterns and underlying mechanisms. The
traces exactly reflect the real workload. However, as the data basis is limited it is difficult to
perform many simulations.
Furthermore, the total number of available processors differs in those workloads. Hence, the
freedom of selecting different configurations and scheduling strategies is limited as a specific
job submission depends on the original circumstances. Each trace is only valid on a similar
machine configuration and the same scheduling strategy. For instance, trace data taken from
a 128 processor parallel machine will lead to unrealistic results on a 256 processor machine.
Therefore, the selection of the underlying data for the simulations depends on the circum-
stances determined by the MPP architecture as well as the scheduling strategy.
Some of the workload traces taken from the archive [54] do not provide estimates for the
job processing time, see Table 4.1. As most of the scheduling algorithms, see Section 4.4,
require such information, Song et al. [146] developed a method to recover the estimated job
processing time. This method first groups all jobs from a workload regarding their processing
time. Then, for each group a Beta distribution is used to describe the dependencies between
real and estimated processing time. The models are extracted from several real traces and
tested on other traces that also include both parameters. The results clearly demonstrated
the usability of this model.



50 CHAPTER 4. PARALLEL JOB SCHEDULING

Identifier NASA CTC KTH LANL SDSC00 SDSC95 SDSC96
Machine iPSC/860 SP2 SP2 CM-5 SP2 SP2 SP2
from 10/01/93 06/26/96 09/23/96 04/10/94 04/28/98 12/29/94 12/27/95
to 12/31/93 05/31/97 08/29/97 09/24/96 04/30/00 12/30/95 12/31/96
Processors 128 430 100 1024 128 416 416
Jobs 42264 79302 28490 201387 67667 76872 38719
Estimated
runtime

no yes yes partially yes no no

Users 69 679 214 213 428 97 59

Table 4.1: Used Workloads from the Standard Parallel Workload Archive, see Feitelson [54].

This model has been applied to all workloads that did not provide the corresponding estimated
processing times. All of the different workload traces presented in Table 4.1 have already been
analyzed in detail in other publications, see the given references below. Furthermore, the
development of scheduling algorithms is often based on at least some of them. All workload
traces are available in the Standard Workload Format defined by Feitelson [54]. Within this
format each job is described by 18 parameters like the release date, the estimated processing
time (if available), the real processing time, the node requirements, the memory consumption
and the user and user group identification numbers. Hence, the different scheduling systems
can include many parameters for their decision process.
The NASA workload comes from a 128-node iPSC/860 hypercube system. This workload
was first analyzed in detail by Feitelson et al. [56]. The CTC trace origins from the Cornell
Theory Center with an IBM/SP2 parallel computer. Hotovy examined this trace in more
detail [82]. The workload trace from the Los Alamos National Lab (LANL) is based on a 1024
nodes Connection Machine CM-5. Feitelson [51] describes the characteristics in detail. This
parallel computer consists of the largest number of nodes of all available traces (1024) and
hence will be used as a reference later. The recorded trace from the Swedish Royal Institute
of Technology (KTH) is based on a 100 node IBM/SP2. This trace was examined in detail
by Mu’alem et al. [111]. The two workload traces (SDSC95, SDSC96) both origin from a
416 node Intel Paragon at the San Diego Supercomputer Center. Both traces are recorded at
subsequent years and hence give the opportunity to analyze changes within the user behavior.
The traces were, for example, examined by Windisch et al. [164]. The SDSC00 workload trace
was also recorded at the San Diego Supercomuting Center. However, this time an IBM/SP2
with 128 nodes was used. A deeper analysis is provided by Feitelson [53].



Part II

Optimizing the Scheduling of a
Parallel Machine

51



Chapter 5

Scaling of Workload Traces

The evaluation and optimization of the scheduling strategy for massively parallel processor
systems is based on simulations as described in Section 4.5. Those simulations help to evaluate
the possible scheduling algorithms and are used to identify the corresponding parameter
settings. The evaluation of scheduling strategies can be based on workload models or real
workload traces. As discussed in Section 4.5.1, workload models can be used to generate any
kind of workload for various machine configurations. However, none of the models is able
to express the whole complexity of a real workload. The real workload traces presented in
Section 4.5.2 restrict the freedom of selecting different configurations and scheduling strategies
as a specific job submission depends on the original circumstances. A trace is only valid on a
similar machine configuration and the same scheduling strategy.
Our research on job scheduling strategies for parallel computers as well as for Computational
Grid environments leads to the requirement of considering different resource configurations.
Furthermore, the development of strategies that can be applied to various workload traces
with similar results requires the existence of several workload traces for a single machine
configuration. The development of a robust scheduling algorithm is based on evaluations by
using several of such workload traces. However, the number of available traces is limited,
see Section 4.5.2. Most of those workloads are observed on different supercomputers. Mainly,
the total number of available processors differs in those workloads, see Table 4.1. Therefore,
our goal was to find a reasonable method to scale such workload traces to fit to a standard
supercomputer. However, special care must be taken to keep the new workload as consistently
as possible to the original trace. To this end, criteria for measuring the validity must be chosen
for the examined methods to scale the workload.
In general, the applicability of workload traces to other machine configurations with a different
number of processors is complicated. For instance, this could result in a high workload and an
unrealistically long wait time for a job. Contrary, the machine is not fully utilized if the amount
of computational work is too low. However, it is difficult to change any parameter of the
original workload trace as it has an influence on its overall validity. For example, the reduction
of the inter-arrival time destroys the distribution of the daily cycle. Therefore, modifications
of the job length are also inappropriate. Modifications of the requested processor number of
a job change the original job size distribution. For instance, we might neglect an existing
preference of jobs with a power of 2 processor requirement. In the same way, an alternative
scaling of the number of requested processors by a job would lead to an unrealistic job size
submission pattern. For example, scaling a trace taken from a 128 node massively parallel

52



53

processor system to a 256 node system by just duplicating each job preserves the temporal
distribution of job submissions. However, this transformation also leads to an unrealistic
distribution as no jobs with a higher processor demand are submitted.
Note that the scaling of a workload to match a different machine configuration always alters
the original distribution whatsoever. Therefore, as a trade-off special care must be taken to
preserve the original time correlations and job size distribution. This chapter presents such a
scaling strategy.
In the following, we present the examined methods to scale the workload traces, see also
Ernemann et al. [47]. To this end, we briefly discuss the different methods as the results of
each step motivate the next.
First, it is necessary to select quality criteria for comparing workload modifications. Distribu-
tion functions could be used to compare the similarity of the modified with the corresponding
original workloads. This method might be valid, but, it is unknown whether the new work-
load has a similar effect on the resulting schedule as the original workload. Here, the same
arguments as in Section 4.5.1 can be used, as the simple similarity of several independent
distributions does not necessarily correspond with a similar scheduling behavior.
As mentioned above, the scheduling strategy that has been used on the original parallel
machine also influences the submission behavior of the users. If a different scheduling system
is applied and causes different response times, the submission pattern of later arriving jobs
will most certainly be influenced. This is a general problem, see Feitelson and Downey [34] or
Downey [33], that has to be kept in mind if workload traces or statistical models are used to
evaluate new scheduling systems. This problem can be solved if the feedback mechanisms of
prior scheduling results on new job submissions are known. However, such a feedback is very
difficult to extract as the underlying mechanisms vary between individual users and single
jobs. Hence, we neglect those feedback influences within our scaling process.
For our evaluation, we have mainly chosen the Average Weighted Response Time (AWRT)
and the Average Weighted Wait Time (AWWT), which are already defined in Equations 4.2
and 4.3 on page 46. Several other scheduling objectives, for instance the slowdown (see e.g.
Ernemann et al. [44]), can be derived from AWRT and AWWT. Furthermore, the utilization
(UTIL) as defined in Equation 4.1 was used. To match the original scheduling systems, we used
First Come First Serve and EASY Backfilling (see Sections 4.4.1 and 4.4.2.1) for generating
the corresponding schedules. These scheduling strategies are well known and used for most of
the original workloads. Note that the focus of this paper is not to compare the quality of both
scheduling strategies. Instead, we use the results of each algorithm to compare the similarity
of each modified workload with the corresponding original workload.
In addition, the makespan (see Section 2.1 on page 7) is considered, which is the completion
time of the last job within the workload. The overall Resource Consumption (RC) is given as
a measurement for the amount of consumed processing power for all jobs within the individual
workloads by summing the resource consumption of all jobs, see Equation 5.1.

RC =
∑
j∈τ

pj ·mj (5.1)

Note that in the following we refer to jobs with a higher number of requested processors as
bigger jobs, while calling jobs with a smaller processor demand smaller jobs.
Scaling only the number of requested processors of a job results in the problem that the whole
workload distribution is transformed by a factor. In this case the modified workload might



54 CHAPTER 5. SCALING OF WORKLOAD TRACES

not contain jobs requesting 1 processor or a small number of processors. In addition, the favor
of jobs requesting a power of 2 processors is not modelled correctly for most scaling factors.
Alternatively, the number of jobs can be scaled. Each original job is duplicated to several
jobs in the new workload. Using only this approach has the disadvantage that the ratio of the
number of requested processors to the machine size of each job within the new workload is
smaller compared to the ratio of the original workload. For instance, if the biggest job in the
original workload uses the whole machine, a duplication of each job for a machine with twice
the number of processors leads to a new workload in which no job requests the maximum
number of processors at all.

5.1 Precise Scaling of Job Size

Workload NASA CTC KTH LANL SDSC00 SDSC95 SDSC96
Number of
jobs (n)

42264 79302 28490 201387 67667 76872 38719

Number of
nodes (m)

128 430 100 1024 128 416 416

Size of the
biggest job

128 336 100 1024 128 400 320

Static factor f 3 8 10 1 8 3 3

Table 5.1: Details of the Examined Workload Traces.

Based on the considerations above, a factor f is determined for combining the scaling of
the requested processor number of each job with the scaling of the total number of jobs. In
Table 5.1 the requested maximum number of processors of a single job is given as well as the
total number of available processors.
As explained above multiplying solely the number of processors of a job or the number of jobs
by a constant factor is not reasonable. Therefore, a combination of both strategies has been
applied in the following. In order to analyze the individual influence of both possibilities the
workloads were modified by using a probabilistic approach: a probability factor p is used to
specify whether the requested number of processors is multiplied for a job or whether with
probability (1−p) copies of this job are created. So, during the scaling process each job of the
original workload is modified by only one of the given alternatives. A rectangular distribution
between 0 and 100 is sampled to generate p. A decision value d is used to discriminate which
alternative is applied for a job. If p produced by the probabilistic generator is greater than
d, the number of processors is scaled by f for the job. Otherwise, f identical, new jobs are
included in the new workload. So, if d is a high value, the system prefers the creation of
smaller jobs while resulting in fewer bigger jobs.
As a first approach, integer scaling factors have been chosen based on the relation to a 1024
processor machine. We restricted ourselves to integer factors as it would require additional
considerations to model fractional job parts. For the KTH a factor f of 10 is chosen, for the
NASA and the SDSC00 workloads we used a factor of 8, and for all other workloads a factor
of 3 is applied. Note that for the SDSC95 workload one job yields more than 1024 processors
if multiplied by 3. Therefore, this single job is reduced to 1024.



5.2. PRECISE SCALING OF NUMBER AND SIZE OF JOBS 55

For the examination of the influence of d, we created 99 modified workloads for each original
workload with d varying between 1 and 99. However, with exception of the NASA trace, our
method did not produce satisfying results for the workload scaling. The imprecise factors
increased the relative overall amount of workload up to 26 % which lead to a jump of several
factors for AWRT and AWWT. This shows how important the precise scaling of the overall
amount of workload is. Second, if the chosen factor f is bigger than the precise scaling factor
the generated workloads that in the majority include smaller jobs (d is high) scale better than
the generated workloads with bigger jobs. If f is smaller than or equal to the precise scaling
factor, the modified workloads scale better for smaller values of d.
Based on these results, we introduced a precise scaling for the number of processors mj of
all jobs j ∈ τ (in the following also called job size). As the precise scaling factors for the
workloads CTC (2.38), KTH (10.24), SDSC95 (2.46) and SDSC96 (2.46) are not integer
values, an extension to the previous method was necessary. In case a single large job being
created the number of processors is multiplied by the precise scaling factor f and rounded, if
necessary.
The scheduling results for the modified workloads are presented in Table 5.2. Only the results
for the original workload (ref) and the modified workloads with the parameter settings of
d = {1, 50, 99} are shown. The modified CTC based workloads are close to the original
workload in terms of AWWT, AWRT and UTIL if only bigger jobs are created (d = 1). For
increasing values of d, also the AWRT, AWWT and UTIL increase. Overall, the results are
closer to the original results in comparison to using an integer factor. A similar behavior can
be observed for the SDSC95 and SDSC96 workload modifications. For KTH the results are
similar with the exception that AWRT and AWWT increase for decreasing values of d.
The results for all modified NASA workloads are very similar. The AWRT and AWWT for
the derived and original workloads does not vary much independently from the used settings.
Note that the NASA workload itself is quite different in comparison to the other workloads
as it includes a high percentage of interactive jobs. Furthermore, nearly no job ever waits for
execution.
In general, the results for this method are still not satisfying. Using a factor of d = 1 is not
realistic as mentioned at the beginning of this chapter.

5.2 Precise Scaling of Number and Size of Jobs

Consequently, the precise factor is also used for the duplication of jobs. However, as mentioned
above, it is not trivial to create fractions of jobs. To this end, a second random variable p1

has been introduced with values between 0 and 100. The variable p1 is used to decide whether
the lower or upper integer bound of the precise scaling factor is considered. For instance,
the precise scaling factor for the CTC workload is 2.3814. We used the value of p1 to decide
whether to use the scaling factor of 2 or 3. If p1 is smaller than 38.14 the factor of 2 will be
applied, 3 otherwise. The average results in a scaling factor of around 2.3814. For the other
workloads we used the same scaling strategy with the decision values of 24.00 for the KTH
workload and with 46.15 for the SDSC95 and SDSC96 workloads.
This enhanced method improves the results significantly. In Table 5.3 the main results are
summarized. Except for the simulations with the SDSC00 workload, all results show a clear
improvement in terms of similar utilization for each of the according workloads. The results
for the CTC workload again show that only small values of d lead to a convergence of the



56 CHAPTER 5. SCALING OF WORKLOAD TRACES

AWRT and AWWT to the original workload. The same qualitative behavior can be observed
for the workloads which are derived from the KTH and SDSC00 workloads.
The results of the modifications for the SDSC95 and SDSC96 derived workloads are already
acceptable as the AWRT and AWWT between the original workloads and the modified work-
loads with a mixture of smaller and bigger jobs (d = 50) are already very close. For these two
workloads the scaling is acceptable.
In general, it can be summarized that the modifications still do not produce matching results
for all original workloads. Although we use precise factors for scaling the number of jobs and
for the number of requested processors, some of the scaled workloads yield better results than
the original workload. This is probably caused due to the fact that according to the factor d
the scaled workload is distributed over either more but smaller (d = 99) or fewer but bigger
jobs (d = 1). As mentioned before, the existence of more smaller jobs in a workload usually
improves the scheduling result. The results show that a larger machine leads to smaller AWRT
and AWWT values. Or contrary, a larger machine can execute relatively more workload
than an according number of smaller machines for the same AWRT or AWWT. However,
this applies only for the described workload modifications. Here, we generate relatively more
smaller jobs in relation to the original workload.

w
or

kl
oa

d m d

P
ol

ic
y n Cmax in

seconds

U
T

IL
in

% AWWT
in sec-
onds

AWRT
in
seconds

RC

430 ref 79285 29306750 66 13905 53442 8335013015
1 82509 29306750 66 13851 53377 19798151305

1024 50 158681 29306750 75 21567 61117 22259040765
99 E

A
SY

236269 29306750 83 30555 70083 24960709755

C
T

C

430 ref 79285 29306750 66 19460 58996 8335013015
1 82509 29306750 66 19579 59105 19798151305

1024 50 158681 29306750 75 28116 67666 22259040765
99 F

C
F
S

236269 29306750 83 35724 75253 24960709755
100 ref 28482 29363625 69 24677 75805 2024854282

1 30984 29363625 69 25002 76102 20698771517
1024 50 157614 29363625 68 17786 68877 20485558974

99 E
A

SY

282228 29363625 67 10820 61948 20258322777

K
T

H

100 ref 28482 29381343 69 400649 451777 2024854282
1 30984 29373429 69 386539 437640 20698771517

1024 50 157614 29376374 68 38411 89503 20485558974
99 F

C
F
S

282228 29363625 67 11645 62773 20258322777
128 ref 42049 7945421 47 6 9482 474928903

1 44926 7945421 47 6 9482 3799431224
1024 50 190022 7945421 47 5 9481 3799431224

99 E
A

SY

333571 7945421 47 1 9477 3799431224

N
A

SA

128 ref 42049 7945421 47 6 9482 474928903
1 44926 7945421 47 6 9482 3799431224

1024 50 190022 7945421 47 5 9481 3799431224
99 F

C
F
S

333571 7945421 47 1 9477 3799431224
Continued on next page



5.2. PRECISE SCALING OF NUMBER AND SIZE OF JOBS 57

w
or

kl
oa

d m d

P
ol

ic
y n Cmax in

seconds

U
T

IL
in

% AWWT
in sec-
onds

AWRT
in
seconds

RC

128 ref 67655 63192267 83 76059 116516 6749918264
1 72492 63201878 83 74241 114698 53999346112

1024 50 305879 63189633 83 54728 95185 53999346112
99 E

A
SY

536403 63189633 83 35683 76140 53999346112

SD
SC

00

128 ref 67655 68623991 77 2182091 2222548 6749918264
1 72492 68569657 77 2165698 2206155 53999346112

1024 50 305879 64177724 82 516788 557245 53999346112
99 F

C
F
S

536403 63189633 83 38787 79244 53999346112
416 ref 75730 31662080 63 13723 46907 8284847126

1 77266 31662080 63 14505 47685 20439580820
1024 50 151384 31662080 70 19454 52652 22595059348

99 E
A

SY

225684 31662080 77 25183 58367 24805524723

SD
SC

95

416 ref 75730 31662080 63 17474 50658 8284847126
1 77266 31662080 63 18735 51914 20439580820

1024 50 151384 31662080 70 24159 57357 22595059348
99 F

C
F
S

225684 31662080 77 28474 61659 24805524723
416 ref 37910 31842431 62 9134 48732 8163457982

1 38678 31842431 62 9503 49070 20140010107
1024 50 75562 31842431 68 14858 54305 22307362421

99 E
A

SY

112200 31842431 75 22966 62540 24410540372

SD
SC

96

416 ref 37910 31842431 62 10594 50192 8163457982
1 38678 31842431 62 11175 50741 20140010107

1024 50 75562 31842431 68 18448 57896 22307362421
99 F

C
F
S

112200 31842431 75 26058 65632 24410540372
Table 5.2: Results for Precise Scaling for the Job Size and Estimated Scaling for Job Number.

w
or

kl
oa

d m d

P
ol

ic
y n Cmax in

seconds

U
T

IL
in

% AWWT
in sec-
onds

AWRT
in
seconds

RC

430 ref 79285 29306750 66 13905 53442 8335013015
1 80407 29306750 66 13695 53250 19679217185

1024 50 133981 29306750 66 12422 51890 19734862061
99 E

A
SY

187605 29306750 66 10527 50033 19930294802

C
T

C

430 ref 79285 29306750 66 19460 58996 8335013015
1 80407 29306750 66 18706 58261 19679217185

1024 50 133981 29306750 66 15256 54724 19734862061
99 F

C
F
S

187605 29306750 66 12014 51519 19930294802
100 ref 28482 29363625 69 24677 75805 2024854282

1 31160 29363625 69 24457 75562 20702184590

K
T

H

1024 50 159096 29363625 69 18868 70002 20725223128
99 E

A
SY

289030 29363625 69 11903 62981 20737513457
Continued on next page



58 CHAPTER 5. SCALING OF WORKLOAD TRACES

w
or

kl
oa

d m d

P
ol

ic
y n Cmax in

seconds

U
T

IL
in

% AWWT
in sec-
onds

AWRT
in
seconds

RC

100 ref 28482 29381343 69 400649 451777 2024854282
1 31160 29381343 69 383217 434322 20702184590

K
T

H

1024 50 159096 29371792 69 41962 93097 20725223128
99 F

C
F
S

289030 29363625 69 12935 64013 20737513457
128 ref 42049 7945421 47 6 9482 474928903

1 44870 7945421 47 6 9482 3799431224
1024 50 188706 7945421 47 2 9478 3799431224

99 E
A

SY

333774 7945421 47 1 9477 3799431224

N
A

SA

128 ref 42049 7945421 47 6 9482 474928903
1 44870 7945421 47 6 9482 3799431224

1024 50 188706 7945421 47 3 9479 3799431224
99 F

C
F
S

333774 7945421 47 1 9477 3799431224
128 ref 67655 63192267 83 76059 116516 6749918264

1 77462 63192267 83 75056 115513 53999346112
1024 50 305802 63189633 83 61472 101929 53999346112

99 E
A

SY

536564 63189633 83 35881 76338 53999346112

SD
SC

00

128 ref 67655 68623991 77 2182091 2222548 6749918264
1 77462 68486537 77 2141633 2182090 53999346112

1024 50 305802 64341025 82 585902 626359 53999346112
99 F

C
F
S

536564 63189633 83 38729 79186 53999346112
416 ref 75730 31662080 63 13723 46907 8284847126

1 76850 31662080 63 14453 47641 20411681280
1024 50 131013 31662080 63 13215 46319 20466656625

99 E
A

SY

185126 31662080 62 11635 44739 20446439351

SD
SC

95

416 ref 75730 31662080 63 17474 50658 8284847126
1 76850 31662080 63 18511 51698 20411681280

1024 50 131013 31662080 63 15580 48684 20466656625
99 F

C
F
S

185126 31662080 62 12764 45867 20446439351
416 ref 37910 31842431 62 9134 48732 8163457982

1 38459 31842431 62 9504 49084 20100153862
1024 50 66059 31842431 62 9214 49087 20106192767

99 E
A

SY

92750 31842431 62 8040 47796 20171317735

SD
SC

96

416 ref 37910 31842431 62 10594 50192 8163457982
1 38459 31842431 62 11079 50658 20100153862

1024 50 65627 31842431 62 10126 49823 20106192767
99 F

C
F
S

92750 31842431 62 8604 48360 20171317735
Table 5.3: Results using Precise Factors for Job Number and Size.

w
or

kl
oa

d m f Policy n Cmax in
seconds

U
T

IL
in

% AWWT
in sec-
onds

AWRT
in
seconds

RC

430 ref 79285 29306750 66 13905 53442 8335013015
1024 2.45 EASY 136922 29306750 68 14480 54036 20322861231
430 ref 79285 29306750 66 19460 58996 8335013015

C
T

C

1024 2.45 FCFS 136922 29306750 68 19503 59058 20322861231
Continued on next page



5.3. ADJUSTING THE SCALING FACTOR 59

w
or

kl
oa

d m f Policy n Cmax in
seconds

U
T

IL
in

% AWWT
in sec-
onds

AWRT
in
seconds

RC

100 ref 28482 29363625 69 24677 75805 2024854282
1024 10.71 EASY 165396 29363625 72 24672 75826 21708443586
100 ref 28482 29381343 69 400649 451777 2024854282

K
T

H

1024 10.71 FCFS 165396 29379434 72 167185 218339 21708443586
128 ref 42049 7945421 47 6 9482 474928903
1024 8.00 EASY 188706 7945421 47 2 9478 3799431224
128 ref 42049 7945421 47 6 9482 474928903

N
A

SA

1024 8.00 FCFS 188258 7945421 47 4 9480 3799431224
128 ref 67655 63192267 83 76059 116516 6749918264
1024 8.21 EASY 312219 63204664 86 75787 116408 55369411171
128 ref 67655 68623991 77 2182091 2222548 6749918264

SD
SC

00

1024 8.58 FCFS 323903 69074629 82 2180614 2221139 58020939264
416 ref 75730 31662080 63 13723 46907 8284847126
1024 2.48 EASY 131884 31662080 63 13840 46985 20534988559
416 ref 75730 31662080 63 17474 50658 8284847126

SD
SC

95

1024 2.48 FCFS 131884 31662080 63 17327 50472 20534988559
416 ref 37910 31842431 62 9134 48732 8163457982
1024 2.48 EASY 66007 31842431 62 8799 48357 20184805564
416 ref 37910 31842431 62 10594 50192 8163457982

SD
SC

96

1024 2.48 FCFS 66007 31842431 62 10008 49566 20184805564
Table 5.4: Results for Increased Scaling Factors with d = 50.

5.3 Adjusting the Scaling Factor

In order to compensate the above mentioned scheduling advantage of having more jobs with
the requirements of only a few processors in relation to the original workload, the scaling
factor f has been modified to increase the overall amount of workload. The goal is to find
a scaling factor f so that the results in terms of the AWRT and AWWT match the original
workload for d = 50. In this way, a combination of bigger as well as more smaller jobs exists.
To this end, additional simulations have been performed with small increments of f .
In Table 5.4, the corresponding results are summarized. More extended results are shown
in Table A.1 in the appendix on page 182. It can be observed that the scheduling behavior
does not strictly linear correspond to the incremented scaling factor f . The precise scaling
factor for the CTC workload is 2.3814, whereas a slightly higher scaling factor corresponds
with an AWRT and AWWT close to the original workload simulation results. The actual
values slightly differ e.g. for the EASY Backfilling (f = 2.43) and the FCFS strategy (f =
2.45). Note that the makespan stays constant for different scaling factors. Obviously the
makespan is dominated by a later job and is therefore independent of the increasing amount
of computational tasks (resource consumption, utilization and the number of jobs). This
underlines that the makespan is predominantly an off-line scheduling objective [57]. Analogous
results were produced by using the KTH, SDSC95 and SDSC96 workloads.
The increment of the scaling factor f for the NASA workloads leads to different effects. A
marginal increase causes a significant change of the scheduling behavior. The values of the



60 CHAPTER 5. SCALING OF WORKLOAD TRACES

AWRT and AWWT are drastically increasing. However, the makespan, the utilization and
the workload stay almost constant. This proves that the original NASA workload has almost
no wait time. A new job is started whenever the previous job is finished.
The approximation of an appropriate scaling factor for the SDSC00 workload differs from the
previously described process as the results for the EASY and FCFS strategies differ much.
Here, the AWRT and the AWWT of the FCFS are more than a magnitude higher than by
using EASY Backfilling. Obviously, the SDSC00 workload contains highly parallel jobs as this
causes FCFS to suffer in comparison to EASY backfilling. In our opinion, it is more reasonable
to use the results of the EASY strategy for the workload scaling, because the EASY strategy
is more representative for many current systems and for the observed workloads. However, as
discussed above, if the presented scaling methods are applied to other traces, it is necessary
to use the original scheduling method that caused the workload trace.
The described method has been applied to all presented workload traces. The modified traces
that will be used in the remainder of this thesis are presented in Table 5.5.

Identifier NASA CTC KTH LANL SDSC00 SDSC95 SDSC96
Processors 1024 1024 1024 1024 1024 1024 1024

Jobs 188986 136471 167375 201378 310745 131762 66185

Table 5.5: Modified workload traces (only the modified values).



Chapter 6

Developing a Multi-Objective
Scheduling System

Chapter 1 provides already a good motivation for using multi-objective scheduling systems for
many real life problems. Further, also scheduling systems for parallel processing systems need
the ability to optimize more than one objective as the different users have different business
relationships to the machine providers and hence must be satisfied differently. However, in
Chapter 4, we have shown that nowadays used scheduling systems in such environments
only optimize a single objective. Nevertheless, Chapter 2 and especially Section 2.5.5 provide
some examples of scheduling systems that incorporate more than one objective. This chapter
describes the main concept of our approach to extend the existing scheduling systems for
parallel processing so that they can also be applied to scenarios with multiple objective.
Hence, the main goal of this work is to develop a methodology to automatically generate such
multi-objective online scheduling strategies. Further, we aim to generate robust scheduling
strategies in the sense that the same strategy can be applied to several different workload
traces with a similar scheduling outcome.
The application of a multi-objective scheduling system requires a provider defined objective
function. However, so far the different machine providers are often not able to express their
preferences in detail. Thus, a method must be provided for them to define more complex
objective functions that are based on several simple objectives.
To this end, we will follow the concept of Krallmann et al. [94] presented in Section 2.6.2
in order to derive such a scheduling objective. However, this concept will be modified to
emphasize the generation of robust scheduling systems.
This chapter presents the main ideas of our approach to derive appropriate scheduling ob-
jective functions from the machine providers’ point of view as well as the development of
the corresponding scheduling strategies. Based on these general ideas, the following chapters
contain the details of the different development steps.

6.1 Solution Details

Here, we will not repeat the general problem structure of the problem, as this has already
been done within the introduction and Figure 1.1. Corresponding to the general problem,
we first describe our simple evaluation objectives. Note that the methodology is not limited
to the presented objectives. Subsequently, we introduce the main development steps of our

61



62 CHAPTER 6. MULTI-OBJECTIVE SCHEDULING SYSTEMS

scheduling strategy development approach in detail.

6.1.1 Our Scheduling Objectives

Our model is able to pay more attention to certain users or user groups in order to achieve
a higher degree of satisfaction for them. Unfortunately, the available workload data do not
provide any user group information nor define any complex scheduling objective. To address
the user group problem, we are using the work of Song et al. [148], who have shown that users
can be reasonably well partitioned into 5 groups for all available MPP workload traces. Those
groups are differentiated with respect to job characteristics and frequency of job submissions.
Within this work, we will also use 5 different user groups. However, we will use the user’s
resource consumption as the differentiation criterion. Here, we generate the 5 user groups
such that user group 1 represents all users with a higher resource consumption whereas all
users in group 5 have a very low resource demand. Equation 6.1 defines a function $u(j) that
is used to describe the relationship between job j and user u.

$u(j) =

{
1, if job j belongs to user u

0, otherwise
(6.1)

Table 6.1 consists of the ratio between the total resource consumption of user u:

RCu =
∑
j∈τ

RCj ·$u(j) (6.2)

and the overall resource consumption (RC), see Equation 5.1, which is needed for a single
user u to become a member of the specified user group.

User Group 1 2 3 4 5
RCu/RC > 8 % > 2 % > 1 % > 0.1 % ≤ 0.1 %

Table 6.1: The assignment of users to user groups depending on the corresponding resource
consumption ratio.

This leads to Equation 6.3, which defines a function %i(j) that is used to introduce different
objectives for different user groups.

%i(j) =

{
1, if job j belongs to user group i

0, otherwise
(6.3)

Based on this user group definitions we are able to define all of our scheduling objectives.
In our work, we exemplarily use seven objectives. To our knowledge, no other research on
scheduling algorithms has used more than three objectives, see Section 2.5.5.
All of the seven individual objectives to evaluate the achieved scheduling results can only be
calculated after all jobs from the given workload have finished their processing.
The first objective is the overall system utilization (UTIL) that is specified in Equation 4.1
in Section 4.3. The average weighted response time (AWRT) as defined in Equation 4.2 is
our second objective. Note that the weight of a job is its total resource consumption, see



6.2. MAIN DEVELOPMENT STEPS 63

Schwiegelshohn et al. [139]. This assumes that there is no preference of jobs due to their
resource consumption. If desired, the weight can be adjusted to implement preferences. The
last five scheduling objectives are the average weighted response times (AWRTi) for user
groups i ∈ {1, 2, . . . , 5}, see Equation 6.4. The definition is similar to Equation 4.2 and uses
the same weight.

AWRTi =

∑
j∈τ

mj · pj · (Cj(S)− rj) · %i(j)∑
j∈τ

mj · pj · %i(j)
(6.4)

These objectives are used as in real installations of parallel computers different user groups
have different relationships to the machine providers. In our work, the complex objective
function can be described by combining the presented seven simple objectives.

6.1.2 Used Workload Traces

During the development as well as during the evaluation of our scheduling strategies we
use simulations with the scaled workload traces, see Chapter 5, that are extended by the
introduced user group information, see Table 6.1. Further, we will not use preemption. Hence,
the job characteristics do not vary as jobs cannot be split. The main advantage of non-
preemptive schedules is the smaller amount of schedules that can be generated compared
with preemptive schedules. For the same job set a preemptive scheduling system can produce
many more different schedules. Hence, the limitation to non-preemptive schedules within this
work reduces the number of necessary simulations. Note that the usage of non-preemptive
schedules does not result in a conceptual limitation as the same methods can be applied to
preemptive scheduling systems. Furthermore, preemptive schedules are not frequently used
in practice.

6.2 Description of the Main Steps during the Scheduling Strat-
egy Development

In the following, we describe the main steps to automatically develop multi-objective schedul-
ing strategies for massively parallel processing systems. Then, each of those steps is detailed
in the next chapters.

6.2.1 Generating the Pareto Fronts for all Workloads

As already introduced, the machine providers need to define appropriate scheduling objectives.
To this end, they need to know which solutions are achievable (Pareto front) and where the
solutions are located that can be produced by applying existing standard scheduling strategies.
Using this information the providers are able to run the existing scheduling systems in the case
that the outcome fits to the local demand. Otherwise, the providers can define appropriate
objectives that reflect their preferences, and an appropriate scheduling strategy needs to be
developed.
As already mentioned, a goal of our work is the development of robust scheduling strategies.
Hence, the scheduling strategy development should be based on all available workloads. Con-



64 CHAPTER 6. MULTI-OBJECTIVE SCHEDULING SYSTEMS

sequently, the Pareto fronts must be generated for all those workloads that are combined to
a representative front, see Section 6.2.2.
As presented in Section 3.2, multi-objective Evolutionary Algorithms are appropriate for the
task to generate Pareto fronts. Note that these algorithms do not guarantee to produce the
true Pareto front. Nevertheless, they have proven to approximate the Pareto front with a
high quality. The Pareto front of possible schedules is generated in an offline fashion. Hence,
information about future jobs can already be used during the scheduling process. However,
we assume that the scheduling constraints are observed as, for example, no job can be started
before its release date. Consequently, the Pareto front describes all schedules that can be
generated by speculation on future job submission. Hence, some of those scheduling solutions
cannot be reached in the online scenario where typically nondelay schedules are generated.
Figure 6.1 shows the outcome of this step exemplarily for a single workload and two objec-
tives. Note that we assume a minimization of the objectives. The details of our Pareto front
generation procedure are presented in Chapter 7.

Objective 1Objective 1Objective 1

Objective 2Objective 2Objective 2

Figure 6.1: A Pareto front of a single workload trace.

6.2.2 Extraction of the Multi-Objective Evaluation Function

The generation of an objective function that expresses the provider’s preferences and leads
to a robust scheduling strategy can be based on the generated Pareto fronts of the different
workloads. The provider could select certain regions within each individual front and try to
generate a scheduling strategy that produces such schedules for the workloads. However, this
procedure might result in a strategy that fits to a single workload but cannot necessarily be
used for other traces.
In this work, we use two approaches to derive a robust scheduling strategy. In the first
approach, the hyper planes that describe the Pareto fronts of the different workload traces
are scaled and moved to generate a maximum overlapping. That is, the distance between the
fronts must be minimized. The resulting representative front enables the machine provider
to select certain regions of preferences that are valid for all underlying workloads. Then, the
distances of any possible schedule to these preferred regions define the objective function that
must be minimized. We assume that this objective function definition leads to scheduling
strategies that work well for most of the workloads as the representative Pareto front is based
on all traces. Figure 6.2a shows two exemplary Pareto fronts of two workloads that must be
transformed to the representative Pareto front displayed in Figure 6.2b. Figure 6.3 displays
the selection of preferred regions within the resulting representative Pareto front. Note that
we assume convex priority regions that are ranked according to the providers preferences.
Region 1 represents the best schedules.



6.3. GENERATING APPROPRIATE SCHEDULING STRATEGIES 65

Pareto-Optima Workload APareto-Optima Workload APareto-Optima Workload A

Pareto-Optima Workload BPareto-Optima Workload BPareto-Optima Workload B

Objective 1Objective 1Objective 1

Objective 2Objective 2Objective 2

(a) Original Pareto fronts.

Pareto-Optima Workload APareto-Optima Workload APareto-Optima Workload A

Pareto-Optima Workload BPareto-Optima Workload BPareto-Optima Workload B

Objective 1Objective 1Objective 1

Objective 2Objective 2Objective 2

(b) Resulting representative Pareto front
after scaling and moving.

Figure 6.2: Pareto fronts of two workload traces.

Objective 1

Objective 2

Region 3

Region 2

Region 1

Distance to the preferred

region

Figure 6.3: Definition of preference regions with the resulting distance measurement for an
arbitrary schedule.

The second approach chooses one of the generated Pareto fronts as a reference. Based on
this Pareto front and the corresponding provider’s preferences a scheduling strategy can be
developed. If the generated strategy applied to all other workloads produces similar schedules
compared to the reference Pareto front and the results for the standard scheduling strategies,
the algorithm can be seen as being robust. During this second approach we can define the
scheduling objective as in the first approach by using preference regions or by specifying a
linear objective function that is based on the seven basic scheduling objectives. Note that this
linear function cannot be defined without knowing the Pareto front, as the relations between
the possible solutions and solutions generated by existing standard algorithms are not known
in advance. The machine providers may change their preferences in the awareness of their
possibilities. This attempt is not as powerful as the region based selection as only a single
preference can be specified without variation. However, the calculation of a schedule objective
is computationally easier and quicker as no distances to hyper planes in seven dimensions must
be calculated.
Chapter 8 includes all details of our approaches to generate a complex objective function that
reflects the machine providers’ preferences.

6.3 Generating Appropriate Scheduling Strategies

Based on the extracted multi-objective evaluation function and on the available workload
traces scheduling strategies must be developed. Here, we use two different approaches. The
first approach is a Greedy scheduling strategy while the second approach is the generation of



66 CHAPTER 6. MULTI-OBJECTIVE SCHEDULING SYSTEMS

rule based scheduling systems.

6.3.1 Development of a Greedy Scheduling Strategy

In our first approach, we develop a Greedy scheduling strategy as already introduced in
Section 4.4.3. Each time a new job arrives or another job finishes execution the waiting
queue is reordered using job weights. Then the simple First Come First Serve strategy, see
Section 4.4.1, is used to schedule the jobs in the given sequence onto the available machines.
Note that the job weights are not given by the users. Further, they are independent of the
current schedule. For each job a complex function determines the weight based on the job
parameters. So, the function can, for example, use the estimated resource consumption, the es-
timated run time, the number of requested machines and the user group information. Further-
more, the dynamic waiting time of each job within the waiting queue is used as a parameter
to determine the job weight.
The complex weight function is generated by parameterizing those job characteristics. The
optimization of the weight function parameters is done by using single-objective Evolutionary
Algorithms, see Section 3.1.
As already mentioned, we follow two approaches of generating a robust scheduling system.
In our first approach, online schedules for all available workload traces will be generated by
using the same parameter settings. Then, the previously extracted provider objective which
determines the distance to the preferred region within the multiple objective space is used
for each workload trace. The results are combined to build a global evaluation value for the
used parameters of the complex sorting criterion. In our second approach, the optimization
process is done for a single workload trace using the extracted provider objective. Then, the
extracted weight parameters are used to schedule the jobs for all other workloads. If the result
is similar, the whole strategy is robust.
This Greedy scheduling approach leads to a scheduling strategy that can be implemented
easily as only a sorting criterion with static parameters is used. Further details are given in
Section 9.1.

6.3.2 Development of Rule Based Scheduling Systems

Our second approach is the development of a rule based scheduling system. Such a system is
divided into two steps. In the first step, the waiting queue is reordered according to a sorting
criterion. Then a scheduling algorithm is selected which assigns the jobs in the given sequence
onto the idle machines. To this end, the system classifies all possible scheduling states and
assigns a corresponding sorting criterion and a scheduling algorithm to each of them. The
classification is based on the system state, that is the actual schedule, the current waiting
queue, and additional external factors, like the time of day.
As for the Greedy scheduling approach, the available workload traces are used offline to
generate such a rule based system. As already mentioned, local scheduling decisions influence
the allocation of future jobs. Hence, the effect of a single decision cannot be determined
individually. Therefore, the whole rule base is only evaluated after the complete scheduling of
all jobs belonging to a workload trace. This has a significant influence on the learning method
to generate this rule base as the evaluation prevents the application of a supervised learning
algorithm. Instead, the reward of a decision is delayed and determined by a critic.



6.3. GENERATING APPROPRIATE SCHEDULING STRATEGIES 67

The actual optimization of the rule based scheduling system regarding the extracted provider
objective is implemented in different ways. We use five different approaches, which are ex-
plained in detail in Section 9.2.
Following our procedure for generating a Greedy scheduling strategy, we apply two different
methods to generate each of the five different rule based scheduling systems. First, we use all
workload traces together with the same rule base and evaluate the combined outcome. This
general rule base is then modified by again using single-objective Evolutionary Algorithms,
see Section 3.1. Second, the rule base is optimized for one workload trace and the result is
applied to all other workloads.
The usage of a rule based scheduling system is expected to generate better schedules compared
with the Greedy scheduling approach. However, the algorithmic complexity is higher and so
is the amount of computational time to generate such rule bases. The details are given in
Chapter 10.



Chapter 7

Generation of the Pareto Front

This chapter presents our method to generate the Pareto front for the available workloads
by using the already introduced seven objectives, see Section 6.1.1. This enables the machine
provider in a later step to establish scheduling objectives that fit to their environment. For
further details, see Ernemann et al. [46].

7.1 Exploring the Scheduling Solution Space

The generation of the Pareto fronts for the available workload traces, see Chapter 5, is done by
using several versions of multi-objective Evolutionary Algorithms, introduced in Section 3.2.
As mentioned above, they can be applied to the underlying problem of solving

Pm|r̄j , p̄j ,mj |#(AWRT, AWRT1, AWRT2, AWRT3, AWRT4, AWRT5, UTIL), (7.1)

regarding Section 2.5.1, best.
A normal scheduling strategy, like FCFS, itself is not able to generate the Pareto front as the
behavior of the scheduler is deterministic and the scheduling result only depends on the given
workload trace. Therefore, one deterministic scheduling strategy generates exactly one result
for a single workload.
Figure 7.1 shows the simplified scheduling system. The scaled workload trace with the user
group information is used as an input. The waiting queue includes all jobs that are already
released but not yet started. So, the scheduler determines which of the jobs from the waiting
queue is assigned to the idle machines next.

MachinesMachinesMachines

TimeTimeTime

Scheduler

Waiting Queue

Whole scaled

workload trace

Whole scaled

workload trace

Whole scaled

workload trace

User 2

User 4

User 3

User 1

User 2

User 1

User 5

Figure 7.1: The figure shows the simplified scheduling system.

Within this work, we will use two different approaches to generate the Pareto front of possible
schedules for each workload trace. However, the underlying concept of both approaches is the

68



7.1. EXPLORING THE SCHEDULING SOLUTION SPACE 69

same. Here, we use a simple FCFS scheduling algorithm. Additionally, the following three
constraints must be satisfied:

1. For all jobs j ∈ τ : j cannot start earlier than its release date rj .

2. All jobs are ordered: a job at position l cannot be started earlier than a job at position
k if k < l.

3. Following the first two constraints, every job is started as soon as possible.

Using this strategy, each schedule can be represented by one permutation of the incoming
job stream. Hence, it is sufficient to change the job sequence in order to generate different
schedules. As no job can be started earlier than its release date, all produced schedules are
valid and could be used in a real life scenario. Furthermore, this process might generate
schedules that have a low utilization and longer periods of time with idle machines. This is
caused by sequences where jobs with a late release date are placed before jobs with a lower
release date. This reflects the effects of speculation in an online real life scenario.
Nevertheless, even these artificial cases might be optimal for the response times of jobs of a
certain user group and therefore represent a Pareto optimum within the objective space. Both
different approaches that are used within this work to generate the Pareto front vary the job
sequence.
The first attempt is based on reordering the jobs within the scaled workload trace before
this trace is used for a simulation of a schedule generation. In this case, the sequence of
jobs in the waiting queue is not further modified. Contrary, the second attempt uses the
original workload traces as an input and only modifies the sequence of jobs within the waiting
queue. This modification of the waiting queue uses a parameterized sorting criterion. Hence,
a variation of these parameters results in different sequences of jobs in the waiting queue.
Both approaches will be explained in the following.
As mentioned above, our work is based on workload traces from real installations. They are
used to represent the incoming job sequences. In our first approach we use a reordering of the
given workload trace before a simulation by using multi-objective Evolutionary Algorithms
with a representation of permutation sequences. During the execution of a single simulation,
the sequence of jobs is not further modified. In the second approach, a different multi-objective
Evolutionary Algorithm that uses a real-value coding modifies coefficients of a pre-defined
weight function that is used to calculate a weight for each job in the waiting queue. This
queue is dynamically reordered according to these weights afterwards.
The outcome of the second approach of changing the order of all jobs within the waiting
queue is limited in comparison to the first approach. Theoretically, every possible sequence
of jobs can be created by using the first method. The second method is restricted to lo-
cal modifications of the job sequence. However, it can be implemented easier. Furthermore,
the corresponding Evolutionary Algorithm uses a real-value coding of just 36 parameters.
Thus, the coding of the individuals for the second approach is easier than the coding of the
permutation of the whole workload trace, as done in the first approach.
Having applied both of the described approaches, the overall Pareto set is extracted. This
enables the machine providers to define their preferences. This results in a complex objective
function. This function can then be used to develop appropriate scheduling strategies later.



70 CHAPTER 7. GENERATION OF THE PARETO FRONT

7.2 Modifying the Sequence of Jobs in the Scaled Workload
Traces

The first approach of modifying the sequence of jobs within the scaled workload trace uses
a permutation coded approach as described in Section 3.1.3.2. So, the multi-objective Evolu-
tionary Algorithm operates on a sequence of jobs. The design of variation operators for this
approach has taken into account some general design principles, e.g. that small changes are
more probable than large changes and that by a concatenated application of the operator
any element in the search space can be reached from any other element. Moreover, variations
should be reversible, meaning that a single operation should have the same probability as its
inverse operation.

7.2.1 Mutation Operators

Following these guidelines for permutation based optimization problems, three elementary
mutation operations were identified. These are the move, swap, and jump operations as de-
scribed in Section 3.1.3.2.
The number of operations that are carried out within one mutation can be influenced by
the mutation number (MN) parameter that is part of each individual. As described in Sec-
tion 3.1.3.2, this parameter describes the mean of a geometrical distribution. Each time the
mutation operator is initiated, a sampling on this distribution specifies the precise number of
mutations.
The mutation jump length (MJL), see Section 3.1.3.2, specifies the mean of a geometrical
distribution. Independent samples of this distribution are used to specify the distance between
jobs during the swap operation and the distance that a single job should jump within the
sequence of jobs.
The parameters MN and MJL are initialized externally by user defined values. Within the
Evolutionary Algorithm, those parameters are subjected to self-adaptation. Here, we use
Rechenberg’s two-point rule with α = 1.3, see Section 3.1.5.2.1.
In detail, the move operator exchanges two adjacent jobs within the job sequence. The number
of moved operations is determined by the geometrical distribution using the mutation number
(MN) parameter. This reflects the smallest possible variation of the job sequence. Further,
many move operations are necessary as several of the used workload traces consist of more
than 100,000 jobs.
The second operator swaps two distant randomly chosen elements. Again, the mutation num-
ber (MN) is used for the number of swap operations. The mutation jump length (MJL) serves
as the mean distance between the two elements. The swap operator allows for greater changes
with fewer mutations compared with the move operator.
The operator jump moves several jobs within the sequence. The number is again determined
by using the geometric distribution with the mean mutation number (MN). The distance is
calculated by using the geometric distribution with the mean mutation jump number (MJN).
In a first approach, the direction of the jump operation is chosen randomly. However, in a
problem specific implementation of this mutation operator a job is only moved towards the
end of the job sequence. This is motivated as the movement of jobs towards the end of the
whole job sequence only delays these individual jobs. Contrary, a job movement towards the
front of the sequence delays all jobs that are in-between. Thus, a movement of jobs towards
the beginning of the job sequence artificially delays several jobs. This results in schedules of



7.2. MODIFYING THE SEQUENCE OF JOBS IN THE TRACES 71

a low quality (low utilization and high average weighted response times). Furthermore, we
restricted the type of job that can be moved. Such a job must follow some rules, concerning its
job properties. For example, the jobs need to have a minimal number of requested machines
mj as well as a minimal estimated processing time p̄j . This means that only ”big” jobs are
moved, which are assumed to have a greater impact on the resulting schedule.
During the generation of the Pareto front, we modified the jump operator in order to introduce
problem knowledge. Within this approach, we use the information about the user group
information that is given for each job. In an outer loop, every time a user group is chosen
randomly. In an inner loop, the jobs of the other user groups are selected randomly and
moved some positions towards the end. At the same time, only jobs with a certain amount of
requested processors and a higher estimated processing time are moved. As before, the number
of the jobs as well as the mean moving distance are controlled by the already introduced
endogenous strategy parameters mutation number and mutation jump number which are
adapted by self-adaptation. Again, Rechenberg’s two point rule with α = 1.3 has been used.
By means of this new mutation operator, it is likely that the mutation operator generates an
improvement in at least one of the objectives as the objectives are also based on certain user
groups. Since another user group is chosen each time, improvements can be obtained in each
direction of the solution space leading to a well-spread Pareto front.

7.2.2 Recombination

For the recombination of two randomly chosen individuals we selected the recombination for
permutation sequences as described in Section 3.1.4. The geometric distribution with mean
mutation number was also used for the recombination in order to determine the number of
jobs that are involved during a recombination.
For two selected individuals within the population the recombination is only applied with a
specified probability. This limits the influence of the recombination.
As our results demonstrate, the application of a recombination was not successful. Hence, we
used this operator only at the beginning.

7.2.2.1 Initialization of Population

In general, we have two possibilities to initialize the starting population. On the one hand,
the population can be initialized with random elements. On the other hand, we can start with
some heuristically generated solutions. These start solutions are only used for generating the
first population and cannot survive the first generation. Both alternatives were tested for
modifying the sequence of jobs within the workload traces.
Next, we describe our approach to generate initial solutions. Here, the user group information
is used to derive initial solutions as five of the seven objectives are directly connected to a
special user group.
In detail, we developed a deterministic permutation rule which was statically applied to the
original workload trace before the simulation. To this end, the jobs are ordered according
to their corresponding user group. However, we used a more complex permutation as also
combined job subsets were used. This will be explained using a small example of three user
groups. One permutation is described as a tuple of ordered jobs. The notation {x, y} describes
that all jobs from both user groups x and y are interleaved as in the original sequence. With
(x, y) we denote that all jobs of user group x are placed before the jobs of user group y. For



72 CHAPTER 7. GENERATION OF THE PARETO FRONT

example, 13 different permutations can be generated for three user groups: (1,2,3), ({1,2},3),
(1,{2,3}), {1,2,3}, (1,3,2), ({1,3},2), (2,1,3), (2,{1,3}), ({2,3},1), (2,3,1), (3,1,2), (3,{1,2}),
and (3,2,1). For our five different user groups 540 orderings are possible.
As each permutation represents a valid schedule, we also incorporate those solutions within our
final determination of the Pareto front for each workload trace. Further, we apply dynamically
the same mechanism to the waiting queue. This means that released jobs are inserted into
the waiting queue according to the described permutation scheme. This again generates valid
schedules that are used to generate the final Pareto fronts.

7.2.2.2 Computational Limitations

Both approaches to generate the Pareto front of possible schedules have been applied to all
mentioned workload traces described in Chapter 5. During these attempts some technical
restrictions exist. Each workload trace has a size of 10-15 MB. As all individuals represent
a permutation of the original workload, the size of an individual is also around 10-15 MB.
Therefore, the number of offsprings within the Evolutionary Algorithms is restricted to about
60 individuals as this results in a memory usage of 600 MB to 900 MB for a whole population.
Otherwise, the physical memory requirements of the simulations exceed the existing physical
memory of the computer (1 GB) which performs the evolutionary operations. Further, each
individual scheduling simulation has been performed on a separate computer within a com-
puting cluster. Depending on the original workload trace each simulation took about 40-120
minutes. This limits the number of trials to generate the Pareto front.

7.2.2.3 Applying NSGA to the Permutation of the Workload Trace

In the following, only results for the CTC workload will be presented. Except for the NASA
workload all traces show a similar behavior. The NASA workload is in some sense artificial
as nearly no job ever waits for the execution, that is, the jobs are started directly after sub-
mission [47]. Therefore, a reordering of the jobs is not meaningful in this case. Consequently,
we will not further use the NASA workload trace.
Furthermore, we present several representative diagrams to demonstrate the outcome of our
approaches to generate the Pareto fronts. In detail, we display figures for UTIL in combination
with the overall AWRT. Moreover, figures for the overall AWRT and the AWRT1 are shown.
The outcome for all other user groups with the corresponding AWRT values is similar. Also
the AWRT1 and AWRT2 will be compared. The combination of other user group AWRT
values is similar and hence not presented in detail.
First, we applied NSGA as described in Section 3.2.1.1, to modify the sequence of jobs within
the workload traces. We have chosen MN=5000, MJL=1, and a randomly generated initial
population. Further, we only used move as mutation operator. As in all following optimiza-
tions, we run 100 generations with µ = 30 and λ = 60. This size is motivated by our com-
putational limitations, see Section 7.2.2.2. These first optimizations resulted in populations
with objective values worse than FCFS.
Next, we applied NSGA with MN=5000, MJL=1, and starting solutions. However, we gen-
erated only 120 such starting solutions by using the information about the five user groups
and generating all job sequences without any interleaving of jobs from different user groups.
Hence, 5!=120 such sequences were generated. Further, the original job sequence within the
workload traces was used. This resulted in 121 initial individuals within the Evolutionary Al-



7.2. MODIFYING THE SEQUENCE OF JOBS IN THE TRACES 73

65

66

67

68

55 57 59 61 63 65 67 69 71

Average Weightes Response Time in 1000 seconds

U
ti

li
z
a
ti

o
n

in
%

NSGA-II

NSGA

(a) UTIL versus AWRT.

55

60

65

70

75

80

85

90

55 57 59 61 63 65 67 69

Average Weighted Response Time in 1000 seconds

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
1

in
1
0
0
0

s
e
c
o

n
d

s

NSGA-II

NSGA

(b) AWRT versus AWRT1.

60

65

70

75

80

85

90

55 60 65 70 75 80 85 90

Average Weighted Response Time 1 in 1000 seconds

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
2

in
1
0
0
0

s
e
c
o

n
d

s

NSGA-II

NSGA

(c) AWRT1 versus AWRT2.

Figure 7.2: Comparison of all results achieved by using NSGA and NSGA-II using the CTC
workload trace.

gorithms. As mentioned above, each NSGA optimization approach used only µ = 30. Hence,
three runs of NSGA with different initial solutions were performed by choosing µ = 30 and
λ = 60. As we have 121 initial individuals, a fourth run used µ = 31 and λ = 62 in order to
keep the ratio of µ/λ = 1/2 constant between all evolutionary optimizations.
The use of starting solutions increased the quality, but still the number of achieved solu-
tions was very small. The deterministically generated start solutions provide already a higher
diversity than the solutions found by NSGA with randomly generated start solutions. The
utilization of the start solutions varies between about 38 % and 68 %. Also the AWRT values
for all user groups vary between several magnitudes.
The quality of the achieved solutions was increased by changing the mutation operator by
applying the swap and jump operators instead of move, see Section 3.1.3.2. This reflects
the characteristics of the underlying scheduling problem as some jobs should be moved so
that several later jobs can overcome this job in order to increase the scheduling quality for
certain objectives. In detail, we used MN=5000 and MJL=4000. However, the results for
this permutation approach using NSGA were of poor quality as only a few non-dominated
solutions were found with a bad diversity compared with the deterministically generated initial
solutions. This outcome might be explained by the non-elitist character of NSGA. Existing
non-dominated solutions might get lost during the optimization.
In Figures 7.2a to 7.2c all achieved non-dominated solutions by modifying the job sequence in



74 CHAPTER 7. GENERATION OF THE PARETO FRONT

the workload traces for the NSGA and NSGA-II variants, see the next section, are presented.
The results clearly show, that the number of found solutions for both approaches is very
small. In the sum, we only found three non-dominated solutions using NSGA, see Table 7.1
on page 79.
Compared with the deterministically generated initial solutions, see Figures 7.3a to 7.3c, the
number of non-dominated solutions as well as the diversity of the whole population is worse.

0

10

20

30

40

50

60

70

0 5 10 15 20 25

Average Weighted Response Time in 1,000,000 seconds

U
ti

li
z
a
ti

o
n

in
%

Workload

Waiting Queue

(a) UTIL versus AWRT.

0

5

10

15

20

25

30

35

0 5 10 15 20 25

Average Weighted Response Time in 1,000,000 seconds

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
1

in
1
,0

0
0
,0

0
0

s
e
c
o

n
d

s

Workload

Waiting Queue

(b) AWRT versus AWRT1.

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

Average Weighted Response Time 1 in 1,000,000 seconds

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
2

in
1
,0

0
0
,0

0
0

s
e
c
o

n
d

s

Workload

Waiting Queue

(c) AWRT1 versus AWRT2.

Figure 7.3: Start solutions generated by the permutations of the whole workload (Workload)
and the local waiting queue (Waiting Queue).

7.2.2.4 Applying NSGA-II to the Permutation of the Workload Trace

In the following, NSGA-II was used with the same subset of the deterministically generated
start generation as used for the NSGA approach (121 solutions) and the changed mutation op-
erator. The number of solutions and the diversity increased. Obviously the introduced elitism
of NSGA-II is necessary to generate better multi-objective solutions compared with NSGA.
Furthermore, the results demonstrate the advantage of using the crowding distance sorting
within NSGA-II in comparison to the sharing method used in NSGA. The crowding distance
sorting method results in a better diversity of the whole population. This is especially true
for solutions that are not in the non-dominated set. A higher diversity in such regions results
in a better diversity of the non-dominated solutions in later generations. Nevertheless, the
overall number of found non-dominated solutions at about 100 was small (see Table 7.1). The



7.3. MODIFYING THE JOB SEQUENCE WITHIN THE WAITING QUEUE 75

diversity of the non-dominated set was also small. Therefore, we applied three modifications
to the system. First, we restricted the direction of the mutation in the way that jobs can only
jump into the direction of the end of the sequence. Our second change, which was motivated
from the previous simulations, results in the deselection of the recombination through the
multi-objective Evolutionary Algorithm as all results which were created using recombination
were of low quality. Third, the usage of good starting solutions was helpful to improve the
quality of the solutions. Nevertheless, a widely spread front of non-dominated solutions could
not be processed. Therefore, multiple copies of the original job sequence were used as the
only start solutions instead of the deterministically generated job sequences. All three mod-
ifications were applied to the NSGA-II algorithm. This did not affect the number of found
solutions, but the diversity increased. The last additional modification that was applied to
the NSGA-II algorithm was the selection of certain jobs during the mutation. Here two re-
strictions were introduced as only jobs with a requested number of machines of more than 31
and/or jobs with an estimated processing time of more than 1 hour were chosen for mutation.
We applied both the ”and” and the ”or” condition. This again increased the diversity of the
achieved results. Further, it reflects the influence of those jobs with a higher resource demand
on the resulting scheduling objectives.

Nevertheless, the number of found non-dominated solutions at about 130 and the achieved
diversity in terms of the variation of the seven simple objectives were not satisfying, see
Table 7.1 on page 79. The final set only consists of solutions with 66 % or 67 % utilization
and the AWRT does not vary much in comparison to the given start solutions.

7.3 Modifying the Job Sequence within the Waiting Queue

To reduce the problem dimension, we developed an alternative representation. Instead of
directly determining the positions of the jobs in the workloads, we optimize the parameters
of a complex sorting criterion. This sorting criterion is applied to the waiting queue. Then
an FCFS scheduler is used to assign the jobs in the given sequence to the idle machines.
As mentioned above, this approach is limited as only the jobs within the waiting queue are
reordered.

By means of this indirect representation of job sequences, it is possible to reduce the number
of variables that need to be optimized to 36 real-value parameters. Of course, the suggested
representation has the disadvantage that not all possible job sequences can be coded. But
even in the former strategy, due to the huge search space it is impossible to generate all
possible schedules within the given computational time. However, it can be assumed that
the represented solutions comprise an interesting part of the search space with regard to the
problem at hand.

All situations where a new job is released or a running job finishes execution are divided into
three classes. This is the outcome of other studies [47] where significant patterns of workloads
were extracted. The three mentioned classes are weekends, week days between 8 am and 6 pm
and week days between 6 pm and 8 am. Within each of these classes, we use one of four
different sorting criteria to calculate job weights that are used during the sorting. The four
complex criteria that determine the weight of job j are:



76 CHAPTER 7. GENERATION OF THE PARETO FRONT

f1(j) =
5∑

i=1

[
%i(j) · wi ·

(
Ki + a · t− rj

p̄j
+ b · p̄j

mj

)]
(7.2)

f2(j) =
5∑

i=1

[%i(j) · wi · (Ki + a · (t− rj) + b · p̄j ·mj)] (7.3)

f3(j) =
5∑

i=1

[
%i(j) · wi ·

(
Ki + a · t− rj

p̄j ·mj

)]
(7.4)

f4(j) =
5∑

i=1

[
%i(j) · wi ·

(
Ki + a · (t− rj) + b · p̄j

mj

)]
(7.5)

Here, t denotes the actual time. The time is needed to calculate the actual wait time of job j
as (t− rj). Exemplarily, we will discuss the sorting criterion 7.2, which determines the weight
for job j. Depending on the user group i of job j, a different parameter wi is used to scale the
resulting weight of this job. The parameter a scales the ratio of the actual waiting time of
job j and its estimated processing time. The ratio of the estimated processing time of j and
the number of requested processors is multiplied by b. The parameters a and b are user group
independent. Furthermore, Ki increases or decreases the importance of (t− rj)/p̄j and p̄j/mj

depending on the user group i that job j belongs to. All other functions are very similar.
The NSGA-II algorithm, described in Section 3.2.2.1, modifies the static parameters wi, Ki,
a, and b in order to adapt the resulting scheduling behavior. Note that for each user group i
individual wi and Ki are defined. This results in 12 parameters (a, b, wi, Ki, i ∈ {1, . . . , 5})
that are needed to parameterize one of the introduced sorting criteria. As the scheduling states
are divided into 3 classes (weekend, weekday 8 am - 6 pm, weekday 6 pm - 8 am) each having
a corresponding sorting criterion, 36 parameters are sufficient to describe the resulting job
sequence precisely. Furthermore, the assignment of the sorting criteria to the three different
classes is varied. The definitions of the criteria 7.2 to 7.5 are based on the adjustment of
parameters wi and Ki depending on the user group i that job j belongs to. This is motivated
as the Pareto front represents the different goals of the participating user groups.

40

50

60

70

80

90

100

54 54,5 55 55,5 56 56,5 57 57,5 58 58,5 59

Average Weighted Response Time in 1000 seconds

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
1

in
1
0
0
0

s
e
c
o

n
d

s

(a) AWRT versus AWRT1.

50

55

60

65

70

75

80

85

90

95

100

40 50 60 70 80 90 100

Average Weighted Response Time 1 in 1000 seconds

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
2

in
1
0
0
0

s
e
c
o

n
d

s

(b) AWRT1 versus AWRT2.

Figure 7.4: Results of the real-value coded approach using the CTC workload trace.

As mentioned above, a real-value instantiation of an NSGA-II was used to optimize the



7.3. MODIFYING THE JOB SEQUENCE WITHIN THE WAITING QUEUE 77

function parameters. We employed an NSGA-II with µ = 30, λ = 60, ρ = 2, and κ =
∞. Further, 100 generations have been used during the optimization. The parameters are
initialized with values chosen uniformly at random between problem specific lower and upper
bounds. In detail, the value intervals used are: wi ∈ [0, 1], a ∈ [0, 1], b ∈ [0, 1], and Ki ∈ [0, 5].
After the µ individuals of the initial population have been generated randomly, they are
evaluated. The Greedy scheduler reorders the jobs in the waiting queue depending on the
calculated job weights. The functions to calculate those weights are parameterized by NSGA-
II. Then the seven simple objective functions are evaluated and these values are returned to
NSGA-II. From the perspective of the Evolutionary Algorithm, the combination of the used
scheduling strategy and the evaluation of a job sequence serves as a black-box. Thus, the
evaluation of each individual is just a function call of the scheduling strategy.
After having evaluated the initial population, the evolution process starts. Again, we use
100 generations. Now, λ offsprings are generated from the current population by means of
variation operators.

7.3.1 Recombination

With a probability of 90 % we applied the Simulated Binary Crossover operator, see Sec-
tion 3.1.4. The setting of the necessary parameter ηc = 20 is directly taken from Deb et
al. [29].

7.3.2 Mutation

After the recombination, an offspring individual is changed by the polynomial mutation oper-
ator, see Section 3.1.3.1. Here with probability equalling the reciprocal number of parameters,
each gene is slightly modified by an additive term that is distributed according to a poly-
nomial function. Again, the parameterization of this variation operator (ηm = 20) is exactly
chosen as given in the literature [29].

7.3.3 Achieved Results

The results for the second approach by dynamically modifying the waiting queue with a real-
value coded Evolutionary Algorithm are presented in Figures 7.4a and 7.4b. This time, we
used µ = 50 and λ = 50. As stated above, the influence of this attempt is limited as only a
limited number of jobs are reordered. As a result, the utilization does not vary much and is
nearly constant at about 66 %. However, the diversity of the overall AWRT and the AWRT
values of all user groups is of high quality. Figure 7.4a represents the relative outcome of a
special user group (here user group 1) to all users for the AWRT. Here, the AWRT1 has a
lower bound of about 50,000 seconds. The overall AWRT does not have such a clear bound.
The comparison of the AWRT values between two user groups presents a well spread Pareto
front as it can be seen in Figure 7.4b. For both representative user groups a clear lower bound
can be observed.
The diversity of the starting solutions is higher than the diversity of the solutions gener-
ated by the parameter value coded approach. Nevertheless, this second approach has a much
better diversity than the permutation coded approach. Additionally, all solutions are in the
”most” interesting area with a high machine utilization but a higher variation of waiting times
between the different user groups. Furthermore, the second approach provides about 13,000
non-dominated solutions and therefore highly covers the solution space in this restricted area.



78 CHAPTER 7. GENERATION OF THE PARETO FRONT

7.4 Final Pareto Front

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25

Average Weighted Response Time in 1,000,000 seconds

U
ti

li
z
a
ti

o
n

in
%

(a) UTIL versus AWRT.

0

5

10

15

20

25

30

35

0 5 10 15 20 25

Average Weighted Response Time in 1,000,000 seconds

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
1

in
1
,0

0
0
,0

0
0

s
e
c
o

n
d

s

(b) AWRT versus AWRT1.

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

Average Weighted Response Time 1 in 1,000,000 seconds

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
2

in
1
,0

0
0
,0

0
0

s
e
c
o

n
d

s

(c) AWRT1 versus AWRT2.

Figure 7.5: Final Pareto front for the CTC workload trace.

The final approximation of the Pareto front is calculated by using all solutions of the permu-
tation coded approach, the real-value coded approach, and all starting solutions. Figures 7.5a
to 7.5c present this set which in the case of the CTC workload trace consists of about 14,000
solutions. The complete approximated Pareto front is displayed in Appendix B on page 183.
For all objectives the front has an acceptable diversity as the parameters for the waiting times
are varying between several magnitudes and the utilization is varying between about 38 %
and 67 %. This set is used for the further development of an appropriate scheduling strategy.
Table 7.1 summarizes all results. The deterministic permutation of the whole workload and
the local waiting queue produce 540 non-dominated solutions each. The overall performance
of the permutation coded Evolutionary Algorithms is very low in comparison to the real-value
coded approach. In this scenario, the NSGA-II algorithm performs better than NSGA and
the applied modifications increase those effects. The real-value coding solves the problem of
generating the approximation to the Pareto front best. Here the number of found solutions
is very high. Therefore, this strategy should be applied in such high dimensions and with
workloads of a similar size.



7.4. FINAL PARETO FRONT 79

Representation EMOA Mutation Adaptation Re-
com-
bi-
nation

StS NoS FC

Workload
Permutation

- - - - - 540 540

Queue Per-
mutation

- - - - - 540 540

Permutation
Coded

NSGA MJL=1,
MN=5,000

- 0.3 121 3 24,000

Permutation
Coded

NSGA MJL=4,000,
MN=5,000

- 0.3 121 1 24,000

Permutation
Coded, All
NSGA Re-
sults

NSGA - - - - 3 48,000

Permutation
Coded

NSGA-
II

MJL=4,000,
MN=5,000

- 0.3 121 106 24,000

Permutation
Coded

NSGA-
II

MJL=1,500,
MN=5,000

Movement of jobs
towards the end.

0.0 1 108 30,000

Permutation
Coded

NSGA-
II

MJL=1,500,
MN=5,000

Randomly chosen
user group. Move-
ment of jobs (with
32 processors
and/or 1 hour
run time) of other
groups towards
the end.

0.0 1 125 30,000

Permutation
Coded, All
NSGA-II
Results

NSGA-
II

- - - - 131 84,000

Real-Value
Coded

NSGA-
II

Poly-
nomial

Real-Value Coded SBX - 12,832 20,000

Final Solu-
tion

- - - - - 13,954 153,080

Table 7.1: Summarized evaluation results. EMOA =̂ Evolutionary Multi-Objective Algorithm.
MJL =̂ Mutation Jump Length. MN =̂ Mutation Number. Recombination describes the
probability to use the recombination operator for two randomly selected individuals. StS =̂
number of start (initial) schedules. NoS =̂ number of non-dominated solutions. FC =̂ function
calls, which is equal to the number of generated schedules.



Chapter 8

Establishing of the Complex
Evaluation Function

In the area of scheduling high performance parallel computers, the machine providers are usu-
ally not able to describe their objectives precisely in advance. Hence, the previously generated
approximation of the Pareto front of possible schedules in combination with the schedules gen-
erated by commonly applied standard strategies are used to define the provider’s preferences.
During this process, we focus on the main goal of generating a robust scheduling strategy.
Here, we have chosen two different approaches to derive the complex provider objective.

In the first approach, we scale and move the existing approximations of the Pareto fronts,
based on the different workloads, in order to generate a single representative Pareto front.
Then, we establish a partial ordering of convex regions within this representative front. These
partially ordered regions reflect the preferences of the providers. Further, the condition of
convexity is needed to easily assign a unique preference to every possible schedule. The com-
plex provider objective is then built by incorporating the distances of a given schedule to the
specified convex regions with different preferences. Consequently, it is not possible to directly
establish a mathematical formulation of the provider’s objective that only depends on several
simple objectives. However, the definition within the objective space based on distances to the
Pareto front and certain regions reflects the preferences of the providers. As we neither have
special knowledge about certain provider preferences nor want to implement a pre-defined
objective, we will exemplarily select the preference regions. Here, the previously generated
representative Pareto front is used as this prevents contradicting definitions for the different
workload traces. The resulting objective function is then used for generating an appropriate
scheduling strategy.

In the second approach, the providers choose the corresponding complex objective function
within one of the available Pareto fronts. Then a scheduling strategy is developed for the
underlying single workload trace. After this, the extracted strategy is applied to all other
workloads. If the results show a similar behavior, the scheduling strategy can be called robust.
Otherwise, the application of the extracted strategy is limited to the individual workload trace
that was selected during the strategy development.

Within this chapter, we present both approaches in detail. The optimization of scheduling
strategies by using the extracted objectives will be part of the next section.

80



8.1. GENERATION OF A REPRESENTATIVE PARETO FRONT 81

8.1 Generation of a Representative Pareto Front

As mentioned above, the goal of the first approach is the generation of a representative Pareto
front that is created by transforming all available approximations of the Pareto fronts of the
various workload traces to a unique front.
During this process, which will be described later in more detail, we only scale and move the
various fronts within the multidimensional objective space. We have chosen not to use rotation
or some other transformations as the machine providers need to select preferred regions within
the resulting Pareto front. However, this is only possible, if the relative relationship between
the various generated schedules holds. The usage of rotation or interval wise scaling would
change those relationships and is therefore excluded from our work.
From the mathematical point of view, each Pareto front consists of a set of grid points ~xi

within a seven dimensional space. The transformation of those Pareto fronts can be based on
three different representations of the corresponding sets of grid points.

1. The original set of grid points for each front can be used or

2. an interpolation of each Pareto front or

3. an approximation of each Pareto front.

Both the interpolation and the approximation of Pareto fronts would result in a mathematical
expression that can be modified easily in most cases. Furthermore, the calculation of distances
between various fronts might become easier in those cases. An interpolation includes all grid
points of a Pareto front exactly, whereas an approximation only tries to come very close to
the majority of the provided grid points. Here, we restricted ourselves to using the original
grid points and an interpolation. An approximation usually smoothes the underlying multidi-
mensional surfaces. However, for our generated Pareto fronts it cannot be assumed that such
a smoothing is valid. Thus, an approximation is not applied. Next, we describe the interpola-
tion of a single approximated Pareto front. Note that the practical usage of the interpolation
in our work has proven to be computationally expensive as the application to a large Pareto
front needs about 3,000 seconds. Thus, we do not apply the presented interpolation in the
remainder of this thesis. However, we still present our interpolation approach in order to
provide all of our efforts.

8.1.1 Interpolation of a Single Pareto Front

This section provides some details about the used interpolation approach. In general, normal
interpolation algorithms in R2 use a system of equations to generate a polynomial of degree

(n−1): P (x) =
n−1∑
i=0

aix
i if the original set includes n grid points. In those cases only the coef-

ficients ai need to be determined. However, those methods are mainly applied in R2. Methods
for R3 exists. They often require a triangulation of the provided points. Such triangulations
within a multidimensional space are computationally very expensive and not recommended
for a larger set of grid points, see Alfred [3]. Also methods like the Shepard-Interpolation, see
Shepard [141] or Farwig [49], cannot be used as they are not designed for seven dimensional
spaces. Hence, we have chosen the interpolation by radial basis functions that have proven
to work well for scattered data in multidimensional spaces, see Micchelli [107]. Therefore, we
will introduce this concept in some more detail.



82 CHAPTER 8. COMPLEX EVALUATION FUNCTION

Using the interpolation by a radial basis function φ(r), the influence of a grid point on the
function value of an interpolation point depends on the distance to this interpolation point.
This motivated the term radial.
In detail, we assume that the Pareto front consists of n grid points. First, one of the dimensions
needs to be selected to represent the result of the interpolation y. In our case, we have selected
the utilization as this objective is restricted to values between 0 % and 100 % and behaves
similar for all available workloads. All other dimensions now represent the grid points ~xo,
o ∈ {1, . . . , n}, for the interpolation process (AWRT, AWRT1 to AWRT5). Each individual
grid point has dimension d (in our case 6) so ~xo ∈ Rd. Now, the interpolation can be described
by sφ(~x) : Rd → R:

sφ(~x) =
n∑

o=1

αoφ(‖~x− ~xo‖) +
Q∑

l=1

βlpl(~x). (8.1)

Equation 8.1 describes the interpolation of the grid points by using the radial basis function
φ(r) with radius

r = ‖~x− ~xo‖. (8.2)

Note that by ‖ · ‖ we denote the Euclidean distance. In our case, sφ(~x) is the utilization of a
given point ~x that represents the AWRT and AWRT1 to AWRT5.
Micchelli [107] describes the interrelationship between the conditionally positive definite basis
function (definition given by Micchelli [107] or by Schaback [131]) φ(‖~x−~xo‖) of order m and
the minimum degree of the regression function pm(~x) as the order m is used to determine Q:

pm(~x) =
Q∑

l=1

βlpl(~x) with Q :=
(

m− 1 + d
d

)
. (8.3)

As introduced and defined by Schaback [131], p1, . . . , pQ are a basis of Pd
m, that is, a basis of

all d-dimensional polynomials with order up to m.
The values αo (o ∈ {1, . . . , n}) and βl (l ∈ {1, . . . , Q}) of Equation 8.1 are determined by
solving a system of equations, see Equation 8.4. Equation 8.5 is only needed if the radial
basis function has a degree m > 0, see Amidor [4]. In this case (pm(~x) 6= 0), the system of
equations is over-determined. Hence, the additional conditions as described in Equation 8.5
are necessary, see Micchelli [107] or Amidor [4].

n∑
o=1

αoφ(‖~xk − ~xo‖) +
Q∑

l=1

βlpl(~xk) = yk, ∀ k ∈ {1, . . . , n} (8.4)

n∑
o=1

αopl(~xo) = 0, ∀ l ∈ {1, . . . , Q} (8.5)

The resulting system of equations is solved using the iterative conjugated gradient method,
see, for example, Bai and Li [10]. This is necessary as a standard method like the Gaussian
elimination process requires too much computation time. Note that some of our fronts consist
of more than 13,000 grid points, see Table 7.1. This results in more than 13,000 equations.
Additionally, the probability of smaller errors due to the imprecise computer calculations
using the Gaussian elimination process is relatively high. Thus, we do not use the Gaussian
elimination process or similar approaches. The conjugated gradient method is numerically



8.1. GENERATION OF A REPRESENTATIVE PARETO FRONT 83

more stable in such scenarios, see Bai and Li [10]. Furthermore, the precision of the results
using this method can be influenced by the number of used iteration. For details, see Bai and
Li [10].
After presenting the concept of the interpolation by radial basis functions, the used basis
functions need to be defined. As already mentioned, Micchelli [107] has shown, that all condi-
tionally positive definite functions can be used. Such functions have an order of m = 0. Hence,
the regression term does not need to be considered and the interpolation is established by
solving the system of equations, see Equation 8.4. In the following, we list the three used
radial basis functions:

φ(r) = e−γr2
, γ ≥ 0, m = 0 (8.6)

φ(r) =
√

γ2 + r2, m = 1 (8.7)

φ(r) =
1√

γ2 + r2
, m = 0 (8.8)

Within the Gaussians function, see Schaback [131], in Equation 8.6 the term γ describes the
influence of the individual grid points on the interpolation value. The further a grid point
the lower the influence. Equation 8.7 presents the basis function Multiquadrics described by
Alfeld [3] and Hardy [75]. However, in this case, the radial basis function has a highest order
of m = 1, see Alfeld [3]. Hence, a regression term is needed if this function is applied. Alfeld
claims that this function is often successfully used. Nevertheless, the increasing influence of
a grid point by an increasing radius contradicts the main idea. This leads to the inverse
Multiquadrics definition with order m = 0, as given in Equation 8.8, see Hardy [75].
The application of the above introduced interpolation by radial basis functions is still compu-
tationally expensive, as the calculation of a single interpolation for a larger Pareto front needs
about 3,000 seconds. This is not acceptable, as during the later transformation of Pareto fronts
the interpolation is very frequently required in order to determine a mathematical representa-
tion that can be used to calculate distances between Pareto fronts. Consequently, we did not
use interpolated Pareto fronts but operated directly on the available grid point information.

8.1.2 Distance between Two Pareto Fronts

During the transformation of Pareto fronts we need to measure the distance between two
Pareto fronts in order to develop the final representative Pareto front by minimizing the
overall distances between the different Pareto fronts. In the following, by PF1, PF2 we will
denote two such Pareto fronts. Further, a single point within such a Pareto front is denoted by
~p ∈ R7 and specifies all seven objectives. The distance between two fronts can be calculated
with several approaches. Note that as mentioned above, the representation of Pareto fronts
is based on the corresponding grid points and not on a mathematical function. Hence, the
distances of Pareto fronts need to be derived from the distances between the grid points of
the different fronts. To this end, there are several possible measurements of calculating those
distances. Here, we have used two approaches.
In the first approach, the distance of a single grid point of the first Pareto front (~p1 ∈ PF1)
to the second Pareto front PF2 is determined by the distance to the nearest grid point of the
second front (~p2 ∈ PF2) which is denoted by D(~p1, PF2). Thus, we can formulate the distance
as:



84 CHAPTER 8. COMPLEX EVALUATION FUNCTION

D(~p1, PF2) = min
~p2∈PF2

‖~p1 − ~p2‖. (8.9)

Note that with ‖ · ‖ we specify the Euclidean distance. In the second approach, we calculate
the distance of a single grid point of the first Pareto front (~p1 ∈ PF1) to the other Pareto
front (PF2), by generating a hyperplane HP that includes the seven nearest grid points of
the second Pareto front PF2 to the point ~p1 ∈ PF1 and calculating the Euclidean distance of
~p1 to the hyperplane HP :

D(~p1, PF2) = D(~p1,HP ). (8.10)

Based on the distance measurements of single points to Pareto fronts we can define several
distance measurements of two Pareto fronts PF1 and PF2. The first possibility is to calculate
the average unsigned distance of all points of both Pareto fronts in each case from the other
front, see Equation 8.11. Note that the distance measurement of a single grid point to a Pareto
front can be one of the previously introduced two forms. |PF1| and |PF2| specify the number
of grid points in the two Pareto fronts PF1 and PF2.

D(PF1, PF2) =
1

|PF1|+ |PF2|

 ∑
~p∈PF1

‖D(~p, PF2)‖+
∑

~p∈PF2

‖D(~p, PF1)‖

 (8.11)

The second possibility uses the squared average of the distances of all points in both Pareto
fronts in each case to the other front as shown in Equation 8.12.

D(PF1, PF2) =
1

|PF1|+ |PF2|

 ∑
~p∈PF1

D(~p, PF2)2 +
∑

~p∈PF2

D(~p, PF2)2

 (8.12)

In this work, we restricted ourselves to these two presented possibilities to calculate the
distance between two Pareto fronts. However, there are of course many more possible distance
measurements. Now, we are able to quantitatively determine the quality of transforming
Pareto fronts with the goal to achieve the lowest possible distances between them.

8.1.3 Transformation of Pareto Fronts

Based on the presented distance measurements, we describe our three transformation methods
that have been used in this work.

8.1.3.1 Maximum Normalization

The first transformation of Pareto fronts in order to achieve a representative front is the max-
imum normalization. This normalization maps the values of every dimension to the interval of
[0, 1]. For a single dimension the transformation can be described by Equation 8.13 assuming
that the values of this dimension of the Pareto front are represented by x.

x ∈ [0, xmax] → x′ ∈ [0, 1]

x′ =
x

xmax
(8.13)



8.1. GENERATION OF A REPRESENTATIVE PARETO FRONT 85

This kind of transformation has the advantage that all dimensions of the Pareto fronts have
the same influence on the distance measurement, as all are mapped to the interval of [0, 1].
Furthermore, all values are different from the value 0 as long as no original value is equal to
0. However, the disadvantage of this procedure is that the codomains of the various Pareto
fronts still differ and therefore cannot be compared easily.

8.1.3.2 Value Range Normalization

This leads to the second approach of using a normalization of the codomains that is described
by Equation 8.14.

x ∈ [xmin, xmax] → x′ ∈ [0, 1]

x′ =
x− xmin

xmax − xmin
(8.14)

Now, the codomains are equal. However, this approach has the disadvantage of having values
of 0 for the former minimum values within each codomain. This destroys the normal view of
the machine provider as they are normally not aware of such values (for example a response
time of 0 cannot be improved).

8.1.3.3 Transformation by using Scalings and Movements

In opposite to both normalization transformations the third approach uses individual scalings
and movements for the different existing dimensions in order to transform one Pareto front
to another. We will not use rotations to transform Pareto fronts as this would result in not
overlapping axes of coordinates. In order to find the right settings for the transformation pro-
cess, we have again used Evolution Strategies. Furthermore, the quality of the transformation
is calculated by using both measurements introduced in Section 8.1.2. In detail, the moving
and scaling are shown in Equation 8.15. Both parameter t and s are determined for each
dimension of each Pareto front individually by the usage of an Evolution Strategy.

x′ = s · x + t (8.15)

8.1.3.4 Transformation Method Selection

For the final transformation of Pareto fronts, we have selected the transformation by scaling
and moving as only this form ensures the relative ordering of simulation results within one
Pareto front by avoiding the problems that occur during the normalization process. Hence, the
results of the transformation only correspond to this method. The final process of generating a
representative Pareto front first selects one of the available fronts and then tries to transform
all other fronts to this selected front. To this end, Evolution Strategies are used to find the
fitting parameters t and s for all dimensions of all Pareto fronts individually.

8.1.4 Parameter Optimization using Evolution Strategies

Next, we describe the corresponding settings of the Evolution Strategy that was used to de-
termine the values for the different t and s values. As we have seven objectives, we need to



86 CHAPTER 8. COMPLEX EVALUATION FUNCTION

determine seven t-values and seven s-values corresponding to Equation 8.15 for each trans-
formation.
We used a standard (µ, κ, λ, ρ) Evolution Strategy as described in Section 3.1. For each
optimization run we used 100 generations. Further, we set κ = 100, that is, we used a plus
strategy (µ + λ). For our transformations we used several settings for µ and λ: (1 + 10),
(7 + 35), (15 + 100), (20 + 140), and (25+170). The chosen ratio of µ/λ = 1/7 is suggested
by Schwefel [136].
The value ranges for the scaling and moving parameters for the different axes have been
limited. This limitation is reasonable and helps the Evolution Strategy to find good settings
quicker. In detail, we specified a value range of −2, 000, 000s ≤ t ≤ 2, 000, 000s for the t-values
for all axes that specify overall or user group dependent average weighted response times. The
corresponding s-value is limited to 0.5 ≤ s ≤ 2. For the scaling and moving of the utilization
axis we defined the following value ranges: −20% ≤ t ≤ 20% and 0.7 ≤ s ≤ 1, 4.
Within the Evolution Strategy, we used the mutation scheme for real-value coded problems as
described in Section 3.1.3.1. Further, we used a mutation strength vector that was adapted as
described in Section 3.1.5.2.2. That is, we used a separate mutation strength for each value.
The two exogenous learning rates are set to:

τ0 =
1√

2 · 14
, and (8.16)

τ1 =
1√

2
√

14
. (8.17)

A discrete recombination was applied to the object parameters whereas an intermediate re-
combination was used for the strategy parameter, see Section 3.1.4. The recombination uses
ρ = µ.
For the transformations of the Pareto fronts to a representative Pareto front, we used the
CTC workload trace as the reference and tried to scale and move all other fronts in order
to minimize the distances to this front. The distance between the fronts was determined by
using Equations 8.9 and 8.11.

8.1.5 Transformation Results

The results of our method to generate a representative Pareto front are given within this
section. However, we do not present all results in detail but show the resulting Pareto front.
In Figure 8.1a the average weighted response times over all users and user group 1 are drawn.
The transformation results are not acceptable, as some of the average weighted response times
have negative values. Furthermore, the triangular structure of the individual Pareto fronts,
see, for example, Figure 7.5b, cannot be observed anymore. Figure 8.1a includes at least two
of such triangular structures.
The same holds for all other dimensions. For example, Figure 8.1b displays the relationship
between the average weighted response time and the utilization. Again, the resulting Pareto
front includes negative values for the average weighted response time. Furthermore, the figure
clearly displays two Pareto fronts compared with Figure 7.5a. The complete resulting front
after transforming all Pareto fronts is presented in Appendix C on page 187.
The results of our transformation approach cannot be used for further processing as the quality
is too low. One of the reasons for the transformation results are the extremely different ranges
of values for the different axes and different workload traces. Therefore, the optimization



8.1. GENERATION OF A REPRESENTATIVE PARETO FRONT 87

-5

0

5

10

15

20

25

30

35

40

-5 0 5 10 15 20 25 30

Average Weighted Response Time in 1,000,000 s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
1

in
1
,0

0
0
,0

0
0

s

(a) AWRT versus AWRT1.

0

20

40

60

80

100

120

-5 0 5 10 15 20 25 30

Average Weighted Response Time in 1,000,000 s

U
ti

li
z
a
ti

o
n

in
%

(b) AWRT versus UTIL.

Figure 8.1: Resulting Pareto front after transforming all workload traces.

process is highly influenced by outliers. The distance measurement between Pareto fronts pays
the same attention to all grid points. Hence, it is beneficial to focus on the scaling of outliers
in order to minimize the overall distance. Unfortunately, this behavior leads to inappropriate
transformation results for most of the other grid points. Especially, the utilization objective
is more or less neglected. Those perceptions lead to an approach to reduce the number of
outliers that negatively affect the transformation result.

8.1.6 Pareto Front Reduction

Resulting from the previous observations, we analyzed the data of all Pareto fronts individu-
ally. For all generated Pareto fronts we found that a selection of all schedules with the highest
utilization values does not significantly affect the amount of non-dominated solutions. Fur-
thermore, the selection of those schedules with the highest utilization values results in a very
low average weighted response time for all individual user groups and all users together.
Further analysis shows that all other schedules do not belong to the class of nondelay sched-
ules, see Section 2.2. However, also some schedules with a very high utilization are not non-
delay schedules. In those cases, the delays are small.
It can be assumed that all schedules with a low utilization are specialists. They optimize
a single objective with a small improvement compared to the other solutions by drastically
decreasing all other objectives. Hence, those solutions represent the mentioned outliers. In
Figures 8.2a and 8.2b the Pareto front for the CTC workload trace is drawn. The circle
includes all non-dominated solutions, which we select for the following processing. All other
solutions will be neglected.
In Figures 8.3a, 8.3b, and 8.3c the selected non-dominated solutions are presented in more
detail. As for all other workloads, the removal of outliers does not affect the number of
non-dominated solutions significantly. Moreover, the coverage of the solution space by the
approximated Pareto front is good. All other diagrams for the reduced CTC based Pareto
front are presented in Appendix D on page 191. Figure 8.3c presents one of the major outcomes
of this removal procedure. As the utilization values of the reduced Pareto front are nearly equal
and significantly higher than the utilization values of all other non-dominated solutions, it can
be concluded that the utilization objective can be removed from the set of possible objectives.



88 CHAPTER 8. COMPLEX EVALUATION FUNCTION

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25

Average Weighted Response Time in 1,000,000 seconds

U
ti

li
z
a
ti

o
n

in
%

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25

Average Weighted Response Time in 1,000,000 seconds

U
ti

li
z
a
ti

o
n

in
%

(a) UTIL versus AWRT

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

Average Weighted Response Time 1 in 1,000,000 seconds

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
2

in
1
,0

0
0
,0

0
0

s
e
c
o

n
d

s

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

Average Weighted Response Time 1 in 1,000,000 seconds

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
2

in
1
,0

0
0
,0

0
0

s
e
c
o

n
d

s

(b) AWRT1 versus AWRT2.

Figure 8.2: Selection of the reduced data set from the set of non-dominated solutions of the
CTC workload trace.

In other words, if the providers minimize the average weighted response times for the existing
user groups, without artificially delaying jobs, the utilization does not vary much. This result
is interesting and has not been published yet.

� �

� �

� �

� �

� 	


 �

� 

� �

� �

� �

� � � �
� � � � � � � �  ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9

: ;<=>
?@

A BC D
E F G
HI

JKL
MNO
PQR S
TUV
WXY

Z[
\

(a) AWRT versus AWRT1.

� � �

� � �

� � �

	 
 �

�  �

� � �

� � � �

� � � � � � � � � �  ! " # $ % & ' ( ) * +
, - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N

O PQRS
TU

V WX Y
Z [ \
]^

_`a
bcd
efg h
ijk
lmn

op
q

(b) AWRT1 versus AWRT2.

� � � � �

� � � � 	

 � �  �

� � � � �

� �

� � � � �
� � � � �

 ! " # $

% & ' ( )

* + , -
. / 0 1 2

3 4 5 6 7

8 9 : ; < = > ? @ A B C
D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e

f ghij
klmn o

pq r
s

(c) UTIL versus AWRT.

Figure 8.3: Reduced CTC workload trace.

In Table 8.1 the number of non-dominated solutions in the original approximations of the



8.1. GENERATION OF A REPRESENTATIVE PARETO FRONT 89

Pareto fronts and the corresponding reduced sets are presented. The table shows that only
for the KTH and the SDSC00 workloads more than 10 % of the non-dominated solutions
are removed. In both cases, the number of original solutions is smaller compared to all other
workloads and hence the removal of some hundred jobs has a higher effect. The Pareto fronts
with the highest numbers of solutions (CTC, SDSC96) are nearly unchanged.

Workload
trace

Original number of
non-dominated solu-
tions

Number of reduced
non-dominated solu-
tions

Ratio of the num-
ber of reduced to
the original number
of non-dominated so-
lutions in %

CTC 13954 13414 96.1
KTH 2536 1995 78.7
LANL 8985 8445 94.0
SDSC00 3123 2584 82.7
SDSC95 8280 7729 93.3
SDSC96 11396 11034 96.8

Table 8.1: Numbers of non-dominated solutions in the original and the reduced Pareto fronts.

Figures 8.4a and 8.4b present the reduced Pareto front for the KTH and SDSC00 workloads.
Both figures significantly differ from the corresponding Figure 8.3b of the CTC workload
trace. These differences represent the different variation possibilities of the various workloads.
In the following, we generate a new representative Pareto front by transforming all reduced
Pareto fronts. To this end, we use exactly the same Evolution Strategy and all settings as
presented in Section 8.1.4.

�

� � �

�

� � �

�

	 
 �

�

 � � � � � � � � �
� � � � � � � � �  ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < =

> ?@AB
CD

E FG HI J K
LM

NOP
QRS
TUV W
XY Z

[ \]^_
`abc

d

(a) KTH workload.

�
�
�
�
�

� �
� �
	 

� �
 �

� �

� � � � � � � � � � �
� � � �  ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B

C DEFG
HI

J KL M
N O P
QR

STU
VWX
YZ[ \
]^ _

` abcd
efgh

i

(b) SDSC00 workload

Figure 8.4: AWRT1 and AWRT2 of the reduced workload traces.

8.1.7 Results of the Transformation of the Reduced Pareto Fronts

The quality of the transformations of the reduced Pareto fronts to form a representative Pareto
front is also not satisfying. Exemplarily, we present the AWRT1 and AWRT2 in Figure 8.5.



90 CHAPTER 8. COMPLEX EVALUATION FUNCTION

Again, at least two Pareto fronts can clearly be seen. Furthermore, the resulting front still
consists of solutions with negative response times. Appendix E on page 195 provides all
diagrams for the generated front.

�

� � �

� � �

� � 	


 � �

 � � �

� � � �

� � � �

� � � �

� � �  

! " # $

% & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A
B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d

e f
ghij
k

l mn o
p q r
st

uv
wx
yz{

|} ~
�� � �

��
��

�

Figure 8.5: AWRT1 and AWRT2 of the resulting combined Pareto front after transforming
all reduced workload traces.

The generation of a representative Pareto front based on all Pareto fronts of the available
workloads was not successful. Hence, we could not follow the idea of specifying the machine
provider’s preferences by selecting certain regions within this representative front. Therefore,
in the following we only use the Pareto front of a single workload trace to specify the providers
preferences and apply the resulting scheduling strategy to all other workloads in order to
analyze the robustness of the generated scheduling strategy.

8.2 Generation of a Provider Preferences Function

The first approach to generate a robust scheduling system, as described at the beginning of
this chapter, cannot be used due to the missing representative Pareto front.
Therefore, we apply the second approach that was presented at the beginning of Chapter 8.
Within this approach, one of the generated Pareto fronts is used to define the provider’s pref-
erences. Then, a scheduling strategy is developed in order to optimize the given preferences.
At the end, the generated algorithm is applied to other workloads and the results are eval-
uated in the sense that we test whether the generated strategy produces similar scheduling
results.
Thus, we need to define the provider’s preferences first. To this end, we use two different
approaches. In the first approach the providers select preferred regions within the multidi-
mensional objective space. This is done graphically by selecting the non-dominated solutions
that the corresponding scheduling strategy should reach. Several regions can be defined to
express the different levels of provider preferences. Based on those regions, we build a fitness
function that can be used to determine the quality of each possible schedule during the later
scheduling strategy development process. To this end, the distances of the schedule to the
Pareto front and to the region with the highest rank are used.
The second approach to express the provider’s preferences uses a simple linear function based
on the 7 objectives. Note that the Pareto front and the scheduling solutions generated by the



8.2. GENERATION OF A PROVIDER PREFERENCES FUNCTION 91

commonly used standard strategies FCFS, CONS, and EASY are still needed. The relationship
between the already achievable scheduling solutions and the non-dominated solutions are
needed to guide the providers as they are normally not aware of the possible improvements of
the different simple objectives. In the following, both attempts to generate a complex objective
function to express the provider’s preferences are explained.

8.2.1 Region Based Specification

This approach to describe the preferences of the machine providers is based on the selection
of regions within the multidimensional solution space. To this end, the reduced Pareto front
is visualized with the scatter plot matrix method, see Wong and Bergeron [165]. Within this
method, the machine provider is able to see all combinations of two-dimensional plots, in our
case 21 of such plots (7·7−7

2 = 21). Then, a tool enables the provider to select convex sets
within those plots. An arbitrary priority is assigned to each selected convex set. The most
preferred region must have the priority equal to 1. The set of all priority regions represents the
ordered levels of preference of the machine provider. Furthermore, the system is not restricted
to a constant number of such priority regions. The selected regions of non-dominated solutions
must represent convex sets as this enables the generation of unique region definitions. This
is necessary to easily determine which region a given schedule belongs to. The constraints
for the regions are that a region with a lower priority is not placed within a region with a
higher priority. Contrary, a region with a higher priority can be included within a region of a
lower priority. These constraints do not limit the usability for practical applications. From a
practical point of view, schedules with a lower priority are not inside a set of schedules with
a higher priority. However, schedules with a higher priority might be surrounded by solutions
with a lower priority.

Z

Objective 1

Objective 2

1R

2R

2PR

3PR

3R 1
x
r

2
x
r

2
x

b

2
x

a

1PR

1
x

a

(a) Definition of preferences with regions and the
corresponding fitness function definition.

Z

Objective 1

Objective 2

1R

2R

1
PR

2PR

3PR

P
M

Q

n
3R

(b) Generation of a hyperplane (bisector).

Figure 8.6: Region concept and definition of bisectors.

Figure 8.6a shows such a possible definition of three priority regions. During the generation
of an optimized scheduling strategy, for each possible schedule we need to decide the corre-
sponding region. Hence, we extend the region definition from the Pareto front to the whole
objective space. The regions are established by choosing a point Z and then bounding the
space that includes the selected non-dominated solutions of the Pareto front with the corre-
sponding priority and this defined point Z. The concept is depicted in Figure 8.6a. In this
example, both objectives should be minimized. However, if this is not possible, the minimiza-
tion of objective 1 is of higher importance than the minimization of objective 2. With this



92 CHAPTER 8. COMPLEX EVALUATION FUNCTION

general concept, it is possible to assign a rank to each schedule within the multidimensional
space. Furthermore, the distance to the Pareto front and the distance to all other regions can
be calculated. This information is later used to define a fitness function for the scheduling
strategy development. In Figure 8.6a the distance of the solution x2 to the Pareto front is
denoted by ax2 and the distance to priority region 1 with bx2 .
Next, we describe the mathematical background for the generation of the regions and also for
the concept to determine the distances of a possible schedule to the Pareto front and to the
region with rank 1.
After the machine providers have selected convex regions within the space of non-dominated
scheduling solutions and assigned a unique priority to each of these regions the above men-
tioned point Z needs to be defined, see Figure 8.6a. Here, the only condition is that for all coor-
dinates of Z the values are higher than the highest corresponding values of all non-dominated
solutions. Then the whole space of solutions is divided into regions by using hyperplanes.
Those hyperplanes are constructed to include the point Z. Furthermore, each hyperplane
divides schedules of two different regions. So, in order to have a unique division of the whole
space, several of such hyperplanes are necessary to distinguish between the existing priority
regions. As the whole space consists of seven dimensions, the hyperplanes have six dimen-
sions. Each hyperplane can be represented in a normal form as described in Equation 8.18.
Here, the vector ~n is the normal vector of the corresponding hyperplane. ~x describes all points
on this hyperplane that satisfy Equation 8.18. The value of d represents the distance of the
hyperplane to the point of origin.

~n ∗ ~x = d (8.18)

The generation of a hyperplane is depicted in Figure 8.6b. We assume two points P and Q
from different priority regions with the corresponding vectors ~p and ~q. Furthermore, the point
Z with vector ~z is defined. Now, we generate a bisector that represents the hyperplane. First,
we define the point M with the corresponding vector ~m that is in the middle between the
points Q and P . The construction of the hyperplane is expressed in Equations 8.19 to 8.21.
The final hyperplane is described by Equation 8.22.

~m =
~p + ~q

2
(8.19)

~r =
~p + ~q − 2 · ~z

2
(8.20)

~n =
~q − ~z − (((~q − ~z) ∗ ~r) ∗ ~r)
‖~q − ~z − (((~q − ~z) ∗ ~r) ∗ ~r)‖

(8.21)

~n ∗ ~x = ~n ∗ ~m (8.22)

The advantage of the representation of the hyperplanes by a normal form (see Equation 8.22)
is the possibility to easily determine on which side of the hyperplane a given point is located.
This is later used to determine the priority region of a given schedule. The signed distance D
of a point ~x within the multidimensional space can be calculated by: D = ~n ∗ ~x− ~n ∗ ~m.
In detail, the preference regions are established by generating all bisectors between schedules
within the region and schedules of other regions. Then, we remove all bisectors that divide
schedules of the same priority region. This leads to the final set of bisectors that describe the
specific preference region.



8.2. GENERATION OF A PROVIDER PREFERENCES FUNCTION 93

This definition and generation of priority regions ensures that for all possible schedules a
unique priority can be assigned. To this end, it is only necessary to test whether the given
schedule is within a region by using the distance definition of all corresponding hyperplanes.
If the sign of the distance for all hyperplanes is equal to the sign for a schedule of this priority
region, the given schedule also belongs to this priority region. Hence, the priority is determined
by testing a given schedule within the region with the highest rank, then the next rank and
so on, until all conditions are satisfied.
The distance of an arbitrary scheduling solution to a special priority region is determined by
the distance to the nearest hyperplane of this selected region. The distance of a scheduling
solution to the Pareto front is calculated by using the distance to the hyperplane that includes
the seven nearest solutions of the Pareto front.

8.2.1.1 Exemplary Region Selection

After the presentation of the concept to generate priority regions, we present one possible
definition of such priority regions. Note that this is only an example and each machine provider
is able to define his own preferences individually. In this example, we use the generated Pareto
front of the CTC workload trace.
In Figure 8.7a, the priority region 1 is shown. Here, we assume that the power user groups 1
and 2 are the most important groups for a machine provider. Furthermore, user group 1 has
a higher priority than user group 2.
Figure 8.7b presents the definition of priority region 2. Here, the priority region 1 is already
removed from the two dimensional plot, as the corresponding schedules have already been
marked with a priority. Priority region 2 specifies that solutions with a very low average
weighted response time for user group 1 are superior to other solutions if region 1 cannot be
reached.
The third priority region is defined in Figure 8.7c. Again, all schedules belonging to the higher
priority regions are already removed from this two dimensional representation. The definition
of priority region 3 specifies that if the average weighted response time of user group 1 cannot
be reached (priority regions 1 and 2) the average weighted response times of user groups 2
and 3 should be minimized with a little higher priority on user group 3.
The last priority region that we define is drawn in Figure 8.7d. Within this two dimensional
plot, the schedules belonging to the higher priority regions are again removed. If those re-
gions cannot be reached, schedules that optimize the average weighted response times of user
groups 2 and 4 are preferred. As we do not specify more than 4 priority regions explicitly, all
remaining schedules of the Pareto front belong to the last priority region, in this case priority
region 5.

8.2.1.2 Generating an Evaluation Function for Each Possible Schedule

Those priority regions only define the different preferences of the machine provider without
providing a mathematical function that directly assigns a scalar objective value. To this end,
we use three kinds of information of a possible schedule S: the priority region it belongs to
pr(S), the distance to the Pareto front a(S), and the distance to the priority region 1 b(S).
As mentioned above, the determination of the priority region can easily be done by using the
relative location of given solutions to the hyperplanes that define the various regions. The
distance to the priority region 1 can be calculated by the minimum distance to a corresponding



94 CHAPTER 8. COMPLEX EVALUATION FUNCTION

� �
� �
� �
� �
� 	

 �
� 
� �
� �
� �

� � �

� � � � � � � � �  ! " # $ % & ' ( ) * + ,
- . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O

P QRST
UV

W XY Z
[ \ ]
^_

`ab
cde
fgh i
jkl
mno

pq
r

(a) Region 1.

� �
� �
� �
� �
� 	

 �
� 
� �
� �
� �

� � �

� � � � � � � � �  ! " # $ % & ' ( ) * + ,
- . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O

P QRST
UV

W XY Z
[ \ ]
^_

`ab
cde
fgh i
jkl
mno

pq
r

(b) Region 2.

� �

� �

� �

� �

� 	


 �

� 

� �

� �

� � � � � � � � � � � � � �  ! " # $ % & ' (
) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K

L MNOP
QR

S TU V
W X Y
Z[

\]
^_`
abc d
efg h

ij
kl

m

(c) Region 3.

� � �

� � �

� � �

	 
 �

�  �

� � �

� � �

� � �

� � �

� � � � �  ! " # $ % & ' ( )
* + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L

M NOPQ
RS

T UV W
X Y Z
[\

]^_
`ab
cde f
ghi j

kl
mn

o

(d) Region 4.

Figure 8.7: Selection of priority regions from the CTC workload.

hyperplane of region 1. The distance of a schedule to the Pareto front is determined by
calculating the distance to the hyperplane that is generated by using the seven nearest points
of the Pareto front. Figure 8.6a includes those distances already. In general, every possible
function based on the described values could be used instead. The resulting objective function
f(S) for schedule S that is exemplarily used in our research work is given in Equation 8.23.
Here, the distance to priority region 1 is multiplied by the priority number pr(S) that S
belongs to. Moreover, the distance to the Pareto front is added. The defined function f(S) is
only an example and can be specified by each machine provider individually.

f(S) = pr(S) · b(S) + a(S) (8.23)

In Chapter 10, we will demonstrate that online scheduling strategies are able to generate
schedules that are very close to the Pareto front. This proves that the selection strategies
presented in this section are reasonable. Thus, the resulting evaluation objectives are usable
in practical scenarios.

8.2.2 Linear Objective Functions

The definition of sets of convex priority solutions and the following establishment of prior-
ity regions is computationally time consuming. Further, the machine provider needs some



8.2. GENERATION OF A PROVIDER PREFERENCES FUNCTION 95

experience during the definitions of the priority regions. Moreover, the individual schedule
evaluation is time consuming, as the distances to the Pareto front and priority region 1 must
be computed.
Hence, we use a second approach by establishing a linear objective function. To this end,
the machine provider must be aware of the Pareto front and the scheduling results achieved
by using the standard algorithms, like FCFS or EASY. Only this relation between possible
schedules and current schedules helps the providers to identify their goals.

8.2.2.1 Relation between achievable Scheduling Solutions and Solutions gener-
ated by Standard Strategies

The above mentioned relative location of the standard algorithms to the non-dominated
schedules is depicted in Figures 8.8a to 8.8c for the AWRT1 and AWRT2 of the CTC, KTH,
and SDSC96 workload traces. The user groups 1 and 2 were selected as the previously defined
priority region 1 includes schedules that minimize the average weighted response times for
both user groups. As drawn in Figure 8.8a the schedule generated by using CONS works
best in the case of the CTC workload. For this workload and all other workloads the FCFS
generated schedules are of lowest quality regarding this combined minimization objective.
This behavior is especially true for the KTH workload trace, see Figure 8.8b. In this case
as well as for the SDSC96 workload trace, EASY and CONS produce nearly equal schedules
regarding this objective.
In the case of the CTC workload, the machine provider might aim to lower both average
weighted response times of the user groups 1 and 2 compared with the standard algorithms.
However, for the KTH only the average weighted response time of user group 1 can be lowered
significantly whereas the response time of user group 2 is already low. The most difficult
decision problem arises in the case of the SDSC96 workload trace. In this case, it is only
possible to decrease one of both objectives, while the other objective would increase in the
same moment.

8.2.2.2 Choosing an Exemplarily Linear Function

The objective function that we use for our research should be similar to the objective function
that is based on the priority region definition. Hence, we focus on the main goal of minimizing
the average weighted response times of user groups 1 and 2. Thus, we choose to use the
objective function defined in Equation 8.24. This function aims to minimize the response
times of both specified user groups by having a higher preference on user group 1. This
includes the previously defined region 2. The previously defined priority regions 3, 4, and 5
are not included, as the weights for these regions are very hard to define.

f(S) = 10 ·AWRT1 + 4 ·AWRT2 (8.24)



96 CHAPTER 8. COMPLEX EVALUATION FUNCTION

450

550

650

750

850

950

1050

45 55 65 75 85 95

Average Weighted Response Time 1 in 1000 s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
2

in
1
0
0
0

s

Pareto Front

CONS

EASY

FCFS

(a) CTC workload trace.

0

0,05

0,1

0,15

0,2

0,25

0,3

0 0,05 0,1 0,15 0,2 0,25

Average Weighted Response Time in 1,000,000 s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
in

1
,0

0
0
,0

0
0

s

Pareto Front

CONS

EASY

FCFS

(b) KTH workload trace.

30

35

40

45

50

55

60

65

70

75

80

30 40 50 60 70 80

Average Weighed Response Time 1 in 1000 s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
2

in
1
0
0
0

s

Pareto Front

CONS

EASY

FCFS

(c) SDSC96 workload trace.

Figure 8.8: AWRT1 and AWRT2 for the three different Pareto fronts with the results of the
corresponding standard algorithms.



Chapter 9

Generating Appropriate Scheduling
Strategies

This chapter describes the different scheduling strategies that we use to optimize the previ-
ously defined complex evaluation function. During this optimization process, we test possible
evaluation function definitions as well as the region based definition presented in Section 8.2.1
and the definition of a linear objective function as introduced in Section 8.2.2. Again, these
functions are arbitrarily chosen and hence just examples for the feasibility of our approach.
The usage of the two different approaches results in two different solution techniques as in-
troduced in Section 2.5.1. The region based objective function represents the problem

Pm|r̄j , p̄j ,mj |FTp(AWRT, AWRT1, AWRT2, AWRT3, AWRT4, AWRT5, UTIL), (9.1)

whereas the linear function corresponds to

Pm|r̄j , p̄j ,mj |Fl(AWRT, AWRT1, AWRT2, AWRT3, AWRT4, AWRT5, UTIL). (9.2)

In general, our goal is to develop a robust scheduling strategy. Unfortunately, it was not
possible to generate a representative Pareto front for all available workload traces. Thus, we
cannot use the method presented in Section 6.2.1. Nevertheless, in the following we explain
two different approaches to derive robust scheduling strategies.
In the first approach, a scheduling strategy is optimized by simulating and evaluating the
same strategy for all workload traces. Then, the results are combined in order to represent
the overall objective. Therefore, the resulting strategy is expected to be robust as it should
work well for most of the workload traces. In the following, we will refer to this approach as
ALLOPT.
The second approach optimizes a scheduling strategy for a single workload trace. Then, this
strategy is applied to all other workload traces. If the outcome is similar in the sense that
the 7 simple objectives and the complex objective function value are close to each other for
all or at least most of the workload traces, the strategy is also called robust. This approach
of using a single workload for the real optimization is referred as SOPT.
For the development of our scheduling strategies, we use on the one hand an adaptation of a
Greedy scheduling strategy and on the other hand the development of rule based scheduling
strategies. Both attempts are described in the following.

97



98 CHAPTER 9. SCHEDULING SYSTEMS

9.1 Adaptation of a Greedy Scheduling Strategy

A Greedy scheduling strategy, as described in Section 4.4.3, is adapted to our problem in
order to maximize the providers’ preferences. In Section 6.3.1, we already introduced the
main concept and advantages of this strategy.
As described above, the Greedy strategy is based on a complex sorting criterion that calculates
job weights for all jobs within the waiting queue. These weights are used to reorder all jobs
within this queue whenever new jobs are submitted or running jobs finish execution. Then,
the jobs in the given order are scheduled using FCFS.
The sorting criterion is only based on static job parameters, like the number of requested
nodes, the estimated runtime given by the users, and the current time. Furthermore, the
users cannot specify a job weight and hence not influence the positions of their jobs within
the waiting queue. Further, the parameters of the static sorting criterion can be specified by
the machine providers individually. Hence, the resulting Greedy strategy can be adapted to
individual preferences. Furthermore, the overall strategy is simple and easy to implement.
In detail, we use the same procedure as presented in Section 7.3. However, this time we do not
aim at generating a Pareto front but at optimizing an individual objective. Thus, we apply
a single-objective Evolutionary Algorithm. Using this strategy, we again divide all system
states into three classes:

1. weekends,

2. weekdays between 8 am and 6 pm, and

3. weekdays between 6 pm and 8 am.

For each of these classes we assign one static sorting criterion. Again, we use the same criteria
as in Section 7.3, namely the criteria 7.2 to 7.5 (on page 76).
Our generation of an adapted Greedy strategy uses all combinations of those four sorting
criteria to the three system states. Hence, we optimize twelve different systems and finally
select the system that performs best.
For each Greedy strategy, only 36 parameters need to be determined in our scenario, as
described in Section 7.3.

9.1.1 Parameter Optimization

For the determination of the 36 parameters we use a standard (µ, κ, λ, ρ)-Evolution Strategy
with a real-value coding as described in Section 3.1. For each optimization, 100 generations are
used. Further, we set κ = 100, µ = 15, and λ = 105 which fits to Schwefel’s recommendation
of µ/λ = 1/7 [136].
The values of the 36 parameters within the criteria definitions 7.2 to 7.5 are limited in order
to reduce the search space. As during the generation of the Pareto front, see Section 7.3, we
again use:
wi ∈ [0, 1], a ∈ [0, 1], b ∈ [0, 1], and Ki ∈ [0, 5].
Our Evolution Strategy uses a mutation strength for each objective parameter. The resulting
mutation strength vector is adapted as described in Section 3.1.5.2.2. To this end, the two



9.2. RULE BASED SCHEDULING SYSTEMS 99

learning rates are defined as:

τ0 =
1√

2 · 36
, and (9.3)

τ1 =
1√

2
√

36
. (9.4)

The object parameters are recombined by using a discrete recombination whereas an interme-
diate recombination is applied for the strategy parameters, see Section 3.1.4. In both cases,
we use ρ = µ.
Within the next section, we describe our second approach to generate appropriate scheduling
strategies.

9.2 Rule Based Scheduling Systems

In our second approach to generate scheduling strategies, we use rule based scheduling systems
as already introduced in Section 6.3.2.
So far, the use of rule based systems in scheduling environments is rare. Nevertheless, first
attempts [19, 48] have shown the feasibility of such an approach. However, those scheduling
systems are all based on single objective evaluation functions. Furthermore, the quality of
these first attempts is not further optimized regarding the given objective. Those works only
prove the applicability of rule based scheduling systems.
A rule based scheduling strategy is divided into two steps. In the first step, a sorting criterion
is used to determine the sequence of jobs within the waiting queue. In the second step, a
scheduling algorithm assigns idle machines to the jobs within the waiting queue in the given
job order. In the following, we use the term strategy to describe the whole scheduling process
that consists of both steps. An algorithm only describes the procedure of the second step that
uses the already sorted waiting queue.
As introduced in Section 6.3.2, the system needs to classify all possible scheduling states in
order to assign the corresponding sorting criterion and the scheduling algorithm to each state.
Each of those states is described by the actual schedule, the current waiting queue, and the
results achieved so far. Then, the rule based system can be established. In this case, each rule
describes in its conditional part the system state in which the rule is active and within the
consequence part the recommendations for the sorting criterion and the scheduling algorithm.
Note that the rule base consists of several rules that might influence the outcome of the whole
rule base. Hence, we call the outcome of a single rule a recommendation for the overall output
which is equal to the consequence part of this single rule. The output of the whole rule base
is generated by combining all recommendation of the participating rules.
As stated in Section 6.3.2, local scheduling decisions influence the allocation of future jobs so
that the effect of a single decision cannot be determined individually. Therefore, the whole
rule base is only evaluated after the completed scheduling of all jobs belonging to a workload
trace. This has a significant influence on the learning method to generate this rule base
as the evaluation prevents the application of a supervised learning algorithm. Instead, the
reward of a decision is delayed and determined by a critic. Furthermore, the generation of
an appropriate scheduling system state classification is not known in advance and has to be
generated implicitly during the generation of the rule base scheduling system.
Before the concept of rule based scheduling is introduced in more detail, we specify the features
that are used.



100 CHAPTER 9. SCHEDULING SYSTEMS

9.2.1 Scheduling Features

Here, we introduce several features to classify possible scheduling states within our rule based
scheduling system. In this work, we restrict ourselves to use seven features. On the one hand,
this enables us to describe the current schedule, the actual waiting queue, and the already
achieved results. On the other hand, the classification of system states by seven features
can still be developed in a reasonable time. Our feature selection only serves the purpose to
illustrate our methodology. Note that objectives evaluate the whole scheduling process at the
end of a simulation while features only describe the current state of the system.
In the remainder of this chapter, we use the following notations. Within our job system τ at
time t we refer to the set of already finished jobs as ξ(t), to the set of running jobs as π(t), and
to the set of jobs within the actual waiting queue as ν(t). Further, we use %i(j) as defined in
Equation 6.3 to specify that job j belongs to user group i. Additionally, we use the resource
consumption RCj of job j as defined in Equation 5.1.
The first feature that we use in our work is the Average Weighted Slowdown (SD) over all jobs
that have completed their processing. The Slowdown (SDj) of a single job j within schedule
S is defined as:

SDj =
Cj(S)− rj

pj
. (9.5)

SDj reaches its minimum value of 1 if job j does not wait before it starts execution. Then,
the release date is identical with the job’s start time. Normally, the range of this feature can
be delimited to the interval of [1,100] as values greater than 10 occur very rarely in practice.
The feature Average Weighted Slowdown (SD) for all already processed jobs j ∈ ξ(t) uses the
same weighting as defined for the AWRT, see Equation 4.2, for the same reason.

SD =

∑
j∈ξ(t)

RCj · (Cj(S)− rj)∑
j∈ξ(t)

RCj · pj
(9.6)

This feature represents the scheduling decisions in the past as only jobs that are already
finished are used to calculate this feature. Here, we have not limited the window for the
slowdown. In practical cases, a limitation to, for instance, the last month or the last week
may be appropriate.
The Momentary Utilization (Um) of the whole parallel computer at time t represents the
second feature that is used within this work. To this end, we determine the number of machines
that are allocated to all currently running jobs j ∈ π(t).

Um =

∑
j∈π(t)

mj

m
(9.7)

In addition, we use five features that refer to the waiting jobs j ∈ ν(t) for each user group
separately. These features - called Proportional Resource Consumption of Waiting Queue for
User Group i (PRCWQi) - represent the percentage of the estimated resource consumption of
the waiting jobs of the specified user group in relation to the estimated resource consumption
of all waiting jobs.



9.2. RULE BASED SCHEDULING SYSTEMS 101

PRCWQi =

∑
j∈ν(t)

p̄j ·mj · %i(j)∑
j∈ν(t)

p̄j ·mj
(9.8)

The values (PRCWQi) for the different user groups enable the rule based scheduling systems
to change their behavior according to the foreseeable resource demand of specific user groups.
Note that we use the estimated processing time p̄j for weighting as the real processing time pj

is unknown before the jobs are completed.

9.2.2 Detailed Rule Based Scheduling Concept

A rule based scheduling approach must assign a scheduling strategy to every possible system
state. A complete rule base RB consists of a set of rules Ri. Each rule Ri contains a conditional
and a consequence part Ωi. The conditional part describes the conditions for the activation of a
rule using the defined features. The consequence part represents the corresponding scheduling
strategy recommendation.
In order to specify all scheduling states in an appropriate fashion each rule defines certain
partitions of feature space within the conditional part. The rule base system must contain at
least one activated rule for each possible system state.
As mentioned above, the scheduling strategy specifies

1. a sorting criterion for the waiting queue ν(t) and

2. a scheduling algorithm that uses the order of ν(t) to schedule one or more jobs.

First, the chosen sorting criterion determines the sequence of jobs within the waiting queue.
Second, the selected scheduling algorithm finds a processor allocation for at least one job of
the sorted waiting queue. We have chosen four different sorting criteria:

• Increasing Number of Requested Processors: Preference of jobs with little parallelism
and therefore higher utilization. This sorting provides the potential gain of being able
to insert many jobs into the current schedule as jobs with a smaller amount of requested
processors are often easier to schedule.

• Increasing Estimated Run Time: Preference of short jobs and therefore higher job
throughput. This sorting criterion potentially leads to a higher job throughput.

• Decreasing Waiting Time: Preference of long waiting jobs and therefore more fairness.
This sorting criterion provides a higher fairness as the jobs are processed according to
their submission. Jobs with a higher waiting time are selected first.

• Decreasing User Group Priority: Preference of jobs from users with a higher priority.
The sorting by user groups provides a higher ranking for all jobs of users with a higher
priority according to their user group assignment. This criterion reflects our objective
function.

The selected scheduling algorithm is one of the four methods presented in Section 4.4. Note
that Greedy is already a complete scheduling strategy while the other described scheduling
algorithms (FCFS, EASY, CONS) need a sorting criterion of ν(t) in addition. Again, the set
of scheduling algorithms can be extended for other rule base systems.



102 CHAPTER 9. SCHEDULING SYSTEMS

The general concept of the rule based scheduling approach is depicted in Figure 9.1. As 4 dif-
ferent sorting criteria with 3 possible scheduling algorithms and the combined Greedy strategy
are available, we have to choose one of 13 strategies for each possible system state. However,
it is not practicable to test all possible assignments in all possible states. For example, let us
assume a very coarse division of each feature into only 2 partitions. Then 13 possible strate-
gies and 7 features result in 1327 ≈ 3.84 · 10142 simulations if all combinations in all possible
system states are evaluated. Additional problems occur during the generation of a rule based
scheduling system as the number and reasonable partitions of features that are required to
describe the system states in an appropriate way are generally unknown in advance.
Hence, we introduce two possible approaches to derive a rule based scheduling system using
only a limited number of simulations. These approaches are rigid rule based scheduling systems
and Genetic Fuzzy systems. In the following, both possible approaches are explained in detail.

Scheduling

Algorithm

Scheduling System

Controller

Classification

Rule Base

…R1 R2 R3 R4 R5 R6 R7 R8 R9 RNr

Scheduling Algorithm

Sorting Criterion

R
u

le
S

el
ec

ti
o
n

R
u

le
A

p
p
licatio

n

m

T
im

e

Current

Schedule

Current

Waiting-Queue

Machines

S
o

rt
in

g

C
ri

te
ri

o
n

O
rd

er
o

f

E
x
ec

u
ti

o
n

Past Scheduling

Decisions

Scheduling

Algorithm

Scheduling System

Controller

Classification

Rule Base

…R1 R2 R3 R4 R5 R6 R7 R8 R9 RNr

Scheduling Algorithm

Sorting Criterion

R
u

le
S

el
ec

ti
o
n

R
u

le
A

p
p
licatio

n

m

T
im

e

Current

Schedule

Current

Waiting-Queue

Machines

S
o

rt
in

g

C
ri

te
ri

o
n

O
rd

er
o

f

E
x
ec

u
ti

o
n

Past Scheduling

Decisions

Figure 9.1: General concept of the rule based scheduling approach.

9.2.3 Rigid Rule Based Scheduling Systems

In this work, we use a rigid rule based scheduling system that is developed in two different
ways. Such a rigid system uses NF = 7 features with a fixed number of intervals for each
feature ω. That is, each feature ω has Np,ω − 1 static bounds, which divide the possible
value range of ω into Np,ω partitions. The static bounds are specified before the assignment
of sorting criteria and scheduling algorithms to the various system states is extracted. This
concept of such fixed partitions is shown in Figure 9.2.
Generally, a larger number of partitions Np,ω of a feature ω potentially leads to a more
accurate rule set while more system state classes must be optimized. Overall, this results in



9.2. RULE BASED SCHEDULING SYSTEMS 103

R
2

R
1

R
3

R
4

b

a

Feature B

F
e
a
tu

re
A

R
2

R
1

R
3

R
4

b

a

Feature B

F
e
a
tu

re
A

Figure 9.2: Example partitioning of the feature space and the resulting set of rules R1 . . . R4.

Nr system state classes that must be provided to cover all possible system states with

Nr =
NF∏
ω=1

Np,ω. (9.9)

The rigid rule based system described above activates only a single rule in any system state.
Hence, the output recommendation of this single activated rule is the output of the whole
scheduling system.
The number of reasonable partitions of the different features is not known. Thus, we have eval-
uated several settings and finally used a single division of the intervals of SD and PRCWQ1

to PRCWQ5 respectively. This leads to two partitions in each case. Further, we found that
using three partitions for the Um feature leads to good rule based scheduling systems. Overall,
this produces 26 · 3 = 192 different system state classes that are needed to build a complete
rule base.
Furthermore, we have evaluated different division values for the system state class features,
see Franke et al. [63]. The partitions which achieved the best results are used for the rigid
rule base system development, see Table 9.1.

Feature Intervals
SD [1-2], ]2-100]
Um[%] [0-75], ]75-85], ]85-100]
PRCWQ1[%] [0-20], ]20-100]
PRCWQ2[%] [0-20], ]20-100]
PRCWQ3[%] [0-25], ]25-100]
PRCWQ4[%] [0-25], ]25-100]
PRCWQ5[%] [0-25], ]25-100]

Table 9.1: Feature partitions for the rigid rule based scheduling systems.

A rigid rule based scheduling system has the advantage of a simple implementation and gen-
erates rule bases that can easily be interpreted by providers. Future scheduling development
may benefit from knowledge gained through this kind of interpretation. The selected schedul-
ing algorithms and sorting criteria for certain system states can directly be extracted from
the corresponding rules without further computation.
Unfortunately, the fixed division of the whole feature space has a critical influence on the
performance of the scheduling system. At the moment, no mechanism is provided that auto-



104 CHAPTER 9. SCHEDULING SYSTEMS

matically adjusts the defined partitions. In addition, a reduction of the number of features is
not yet considered, which means that all rules must contain and specify all features.
As mentioned above, we use two different methods to establish the assignment of sorting
criteria and scheduling algorithms to system state classes. Both will be explained in the
following.

9.2.3.1 Iterative Rule Base Development

The first rigid attempt, the iterative rule base generation, is based on a sequential optimization
of the output behavior assignment to a pre-defined system state class.
Algorithm 9.1 describes the assignment of sorting criteria and scheduling algorithms to those
classes.

Algorithm 9.1 Iterative rule base optimization.
Assign a standard strategy to all Nr rules R1, . . . , RNr of rule base RB;
for (i = 1 to Nr) do

fold(Ri) =∞;
for (s = 1 to 13) do

Use strategy s as the consequence part of rule Ri and run a simulation with the result
fnew(Ri);
if (fnew(Ri) < fold(Ri)) then

Assign strategy s to rule Ri;
fold(Ri) = fnew(Ri);

end if
end for

end for

Here, the best scheduling strategy is determined for the first system state class by using a
standard strategy for all other system state classes. Then, the scheduling strategy for the
second system state class is extracted by using the strategy that has been determined for
system state class one and the standard strategy for all other classes. Then, the process
optimizes all following system state classes with the same procedure.
In our work, we used FCFS together with the sorting by waiting time as the standard schedul-
ing strategy in Algorithm 9.1. This strategy is used at many real installations.
The iterative rule base development needs 192 · 13 = 2496 simulations for a single workload
trace in order to determine the final rule base assuming that we use the introduced simple
partitioning of the feature space into 192 system state classes.
This approach optimizes each system state class separately with limited influence on other
allocations. Thus, it can be assumed that the resulting rule base can still be improved by
considering the cooperation aspects of different rules. Hence, the next section describes our
second approach for a rigid rule based scheduling system that includes such a cooperation
aspect.

9.2.3.2 Probability Driven Rule Base Development

With the probability driven rule base development, we try to avoid the excessive amount
of simulations that need to be performed in order to generate the rule base. Further, this



9.2. RULE BASED SCHEDULING SYSTEMS 105

approach puts the emphasize on the cooperation aspect of the rules within the final rule base
as no standard scheduling strategy is used and the evaluation of the assignment of a special
scheduling strategy to the consequence part of a rule is based on several simulations with
varying strategy assignments for all other rules.
Rule bases are generated by randomly assigning potential scheduling strategies to rules so
that each scheduling strategy is assigned to each rule the same number of times. Hence, not
all rule bases are generated completely at random. Remember that the conditional part is
rigid and does not vary. Thus, a single rule completely describes a single system state class.

Algorithm 9.2 Probability driven rule base generation.
for all (rules Ri ∈ {1, . . . , Nr}) do

for all (scheduling strategies Ωi ∈ {1, . . . , 13}) do
pa(Ri,Ωi) = p; {set the number of possible assignments pa(Ri,Ωi) of strategy Ωi to
rule Ri to the fixed number p > 0.}
fRi,Ωi = 0;

end for
end for
while (∃ (Ri,Ωi) with pa(Ri,Ωi) > 0) do

for all (rules Ri ∈ {1, . . . , Nr}) do
randomly select a strategy Ωi with pa(Ri,Ωi) > 0 and assign this Ωi to Ri;
pa(Ri,Ωi) = pa(Ri,Ωi)− 1;

end for
evaluate the resulting rule base RB by generating a schedule with a given workload trace
with the resulting objective value fobj ;
for all (Ri,Ωi ∈ RB) do

fRi,Ωi = fRi,Ωi + fobj ;
end for

end while
for all (rules Ri ∈ {1, . . . , Nr}) do

determine final strategy Ωi = arg min
Ωj∈{1,...,13}

fRi,Ωj and assign this strategy to Rule Ri;

end for

Then, we use those rule bases to produce schedules for the given workload data and evaluate
those schedules with the help of the complex scheduling objective. Each schedule results in a
scalar objective value. The assignment of a special scheduling strategy to a rule is evaluated by
adding the scalar objective values of all schedules that were generated using this assignment.
Finally, we build the resulting rule base by assigning the scheduling strategies with the smallest
sum of the objective values to the individual rules as we assume a minimization of the objective
function. With this approach the number of required simulations can be reduced significantly
as we only estimate the optimal assignments. In general, the performance can be increased by
generating more rule bases. However, the trade-off between a better performance and more
required simulations must be kept in mind.
In Algorithm 9.2, the parameter p describes how often a scheduling strategy is assigned to
a single rule. This parameter p influences the number of required simulations that is given
by the product of the number of possible scheduling strategies (NΩ) and the parameter p.



106 CHAPTER 9. SCHEDULING SYSTEMS

Franke et al. [64] have shown that p = 50 is a good compromise between the required number
of simulations and the scheduling quality. Hence, we used p = 50. This, in our case, results in
13 · 50 = 650 simulations, which is significantly less than the required number of simulations
for the iterative rule base generation approach.

9.2.4 Scheduling Strategies based on Genetic Fuzzy Systems

The previously presented rigid scheduling systems have several drawbacks regarding the gen-
eration of an appropriate rule based scheduling system. Mainly, the static number of feature
partitions and the static pre-defined bounds for these partitions are not flexible enough and
may lead to bad scheduling systems. Furthermore, the whole feature space needs to be divided
and appropriate scheduling strategies need to be assigned to each individual partition. Hence,
the number of rules cannot be varied.
Consequently, we need a method that automatically adjusts the partitions of the feature space
and assigns appropriate scheduling strategies to the resulting system state classes in parallel.
Genetic Fuzzy systems, see Hoffmann [79], provide the capabilities to solve these problems.
We therefore introduce this concept in more detail.
Fuzzy systems are usually designed by modeling implicit knowledge of an expert within a
set of linguistic variables and Fuzzy rules, see Hoffmann [79]. Such Fuzzy systems have been
applied successfully for many real world problems. However, Fuzzy systems themselves do not
provide mechanisms to automatically learn from existing data.
The various design concepts of Fuzzy logic controllers often use Evolutionary Algorithms
to adjust the membership function as well as to define the output behavior of individual
rules, see, for example, Hoffmann [79]. Especially Genetic Fuzzy systems have proven to deal
with such classification and automatic rule base generation problems in a suitable way. All
those Genetic Fuzzy systems encode either single rules (Michigan approach, Bonarini [14]) or
complete rule bases (Pittsburgh approach, Smith [145]). Both encoding approaches are used
in this work and hence are introduced in more detail.
During the evolutionary optimization the Michigan approach uses a set of individuals each
representing only a single rule. This set of individuals is evolving during the optimization
process. Hence, all rules are in competition in order to form next generations. However, they
need to cooperate as well to establish rule bases that perform well corresponding to the given
objective function. Thus, the difficulty of this approach is the cooperation-competition nature
of the problem. Individual rules must be selected during the optimization whereas the evalu-
ation of single rules is not possible. Hence, an effective fitness assignment that incorporates
these difficulties is needed during the evolution.
In our work, the determination of a Genetic Fuzzy system by using the Michigan approach
is realized by a Symbiotic Evolutionary Algorithm, as introduced by Juang et al. [88]. In the
following, we will use the terms Michigan approach and Symbiotic Evolution interchangeably
as this concept is based on the Michigan approach. It evaluates the different rules together as
several rules are needed to compose a complete rule base. In opposite to Jung et al. [88], Hoff-
mann [79] restricts the competition of rules to subsets that trigger for similar inputs. This
restriction influences the selection of rules and also the recombination between them. The
outcoming rules provide a higher diversity and therefore further improve the coverage of the
possible input values. This often leads to a quicker generation of the final Fuzzy rules. Con-
sidering the time consuming simulations, which have to be performed in order to determine
the overall performance of a rule based system with respect to the resulting schedule. The



9.2. RULE BASED SCHEDULING SYSTEMS 107

reduction of the number of necessary simulations is of great importance. Hence, we combine
the Symbiotic Evolutionary Algorithm with Hoffmann’s approach.
The Michigan approach mainly addresses continuous learning in non-inductive problem areas,
see Cordón et al. [24]. Further, the Michigan approach is focused on the idea of representing
the knowledge of a single entity that adopts through the interaction with its environment.
However, another major goal during the generation of a rule based scheduling system is the
ability to reduce the number of necessary rules to a reasonable minimum. In this scenario,
the Pittsburgh approach is more appropriate as the number of necessary rules can easily be
encoded within an individual. Contrary, rules within the Michigan approach participate in
different Fuzzy systems. Thus, a calculation of the combined number of rules would require an
additional overhead. The Pittsburgh approach encodes a whole rule base in each individual.
Hence, the encoding and also the evaluation of a reasonable number of rules is much easier.
Further, the length of individuals can be integrated within the fitness function that is used
to evaluated rule bases. Thus, the preference of rule bases with a smaller number of rules
can easily be implemented. The main drawback of the Pittsburgh approach in comparison to
the Michigan approach is the increasing size of the individuals. This drastically increases the
size of the search domain of the evolutionary optimization and may reduce the efficiency of
various genetic operators.
During the generation of our Genetic Fuzzy systems we use Evolution Strategies to perform
the adaptation of the model parameter. The application of Evolution Strategies is not se-
lected by the majority of research projects in the area of Fuzzy systems. However, we have
chosen these strategies as they have proven to outperform Genetic Algorithms when applied
to real-value coded problems, see Bäck and Schwefel [7]. This fits to our problem as the under-
lying scheduling system is real-value coded. Furthermore, Evolution Strategies are more often
applied to real-value coded problems whereas Genetic Algorithms usually process a string
of discrete, often binary symbols. In addition, Evolution Strategies support self adaptation
which makes them often more flexible to explore the structure of the fitness landscape.
Within this work, we restrict ourselves to Genetic Fuzzy systems. However, other approaches,
like Neuro-fuzzy systems [79], might also be able to solve the problem at hand. A compre-
hensive introduction to Genetic Fuzzy systems and all corresponding learning methods is
provided by Cordón et al. [24].
Before the different rule base encoding schemes are explained in detail, we introduce the
encoding of individual rules and detail the computation of the final Fuzzy controller output.

9.2.4.1 Coding of Fuzzy Rules

In the following, the coding of Fuzzy rules is introduced. Since our approach is derived from the
traditional Takagi-Sugeno-Kang (TSK) model, see Takagi et al. [153], we provide an overview
of this concept first.

9.2.4.1.1 Takagi-Sugeno-Kang (TSK) Fuzzy Controller The TSK-Fuzzy controllers
are well studied and applied in many research projects, see Cordón at al. [24] and Jin et
al. [86]. In opposite to conventional controllers that use a single model to describe the whole
system, TSK-Fuzzy controllers are built by using several simple submodels that are combined
to represent the global behavior of the system.
TSK models typically consist of Nr IF-THEN rules Ri of the form (see Cordón at al. [24,
p. 20]):



108 CHAPTER 9. SCHEDULING SYSTEMS

Ri : IF x1 is g
(1)
i and x2 is g

(2)
i and ... xNF

is g
(NF )
i

THEN yi = bi0 + bi1x1 + . . . + biNF
xNF

.

The vector ~x with NF elements describes the current system state and hence represents the
input of the Fuzzy system. The yi is the output of rule Ri. In general, g

(ω)
i are linguistic labels

associated with fuzzy sets that define their meaning, see Cordón at al. [24, p. 4]. Here, g
(ω)
i

is the ω-th input Fuzzy set that describes the membership for a feature ω. To this end, a
membership function must be defined. The coefficients bi0 to biNF

are constant. The overall
output of a TSK-Fuzzy system can then be computed by:

y =

Nr∑
i=1

φiyi

Nr∑
i=1

φi

=

Nr∑
i=1

φi(bi0 + bi1x1 + . . . + biNF
xNF

)

Nr∑
i=1

φi

. (9.10)

Here, φi is the degree of membership that is often called firing strength of rule Ri and is
defined as the product of all membership functions that are associated with the participating
Fuzzy sets:

φi = g
(1)
i (x1) ∧ g

(2)
i (x2) ∧ . . . ∧ g

(NF )
i (xNF

) =
NF∏
ω=1

g
(ω)
i (xω). (9.11)

As shown, the output yi of a TSK-Fuzzy controller is a linear combination of the input vari-
ables plus a constant value. However, in the context of rule based scheduling systems, only a
single scheduling strategy has to be generated as the recommendation of a single rule. Hence,
we follow the approach of Juang et al. [88] by modifying the process of generating the rec-
ommendation of single rules and also the output of the whole rule base system. The details
of our modifications are presented in the remainder of this section. In our system, the recom-
mendation of a single rule does not depend on the input parameters but has to be assigned
to a rule. Evolutionary Algorithms are used to find suitable assignments of recommendations
to single rules.
In the following, we detail our Genetic Fuzzy system. The coding schemes and learning tech-
niques are adapted and modified using the work of Juang et al. [88] and Jin et al. [86].

9.2.4.1.2 Coding of Rules For a single rule Ri, every feature ω of all NF features is
modeled by a Gaussian membership function (µ(ω)

i , σ
(ω)
i )-GMF,

g
(ω)
i (x) =

1

σ
(ω)
i

√
2π

exp

−(x− µ
(ω)
i )2

2σ
(ω)
i

2

 . (9.12)

In Figure 9.3 a sample (5,0.75)-GMF is depicted.
The µ

(ω)
i value is the center of the feature ω that is covered by the rule Ri. Therefore, this

value defines an area of system state in the feature space where the influence of the rule is
very high. Note that using a GMF as feature description the condition

∞∫
−∞

g
(ω)
i (z)dz = 1 ∀ i ∈ {1, . . . Nr} ∧ ω ∈ {1, . . . NF } (9.13)



9.2. RULE BASED SCHEDULING SYSTEMS 109

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

x

g i(x
)

µ 

σ 

Figure 9.3: Gaussian membership function with µ = 5 and σ = 0.75.

always holds. In other words, for increasing σ
(ω)
i values, the peak value of the GMF decreases

because the integral remains constant. Using this property of a GMF we are able to reduce
the influence of a rule for a feature ω completely by setting σ

(ω)
i to a very high value. For

σ
(ω)
i → ∞, a rule has no influence for feature ω anymore. With this approach, it is also

possible to establish a kind of default value that is used if no other rules are defined in a
feature domain. Based on this feature description, a single rule can be described by

Ri =
{

g
(1)
i (x), g

(2)
i (x), . . . , g

(NF )
i (x),Ωi

}
. (9.14)

The consequence of rule Ri is an integer number Ωi that represents a scheduling strategy. In
general, the consequence does not need to be restricted to a single number. For example, it is
possible to specify a scheduling strategy which is particularly favorable for a certain system
state and another one which is clearly unfavorable. The final output decision is then computed
by the superposition of the consequence parts of the involved rules.
The main advantage of using several GMFs for describing a single rule is the automatic
coverage of the whole feature space. In contrast to the iterative approach, a rule recommends
a scheduling strategy for all possible system states. Hence, it is the focus of this approach to
find a meaningful set of Nr rules that generates a good rule base system RB:

RB = {R1, R2, . . . , RNr}. (9.15)

9.2.4.1.3 Multiple Consequence Parts In order to further support the Fuzzy concept,
we decided to use multiple consequence parts. Thus, the consequence part of every rule Ri,
i ∈ {1, . . . , Nr}, includes a weighted recommendation for all NΩ possible outputs Ωh, with
h ∈ {1, . . . , NΩ}. The consequence part of rule Ri is therefore described by a vector

~Ω(Ri) =
(

wi1 wi2 . . . wiNΩ

)T
. (9.16)

We restrict the possible weight values wih of rule Ri to the elements of the set {−5, −1, 0, 1, 5}.
The value −5 represents a particularly unfavorable scheduling strategy while 5 is a particularly
favorable one. The other possible weights can be interpreted accordingly. We use a non-linear
weight scaling in order to force distinct recommendations. When considering the superposi-
tion of those weights similar weights may lead to almost indistinguishable recommendations.
Furthermore, we also include 0 as possible weight to express that a rule behaves completely



110 CHAPTER 9. SCHEDULING SYSTEMS

neutral with respect to the recommendation of a scheduling strategy for a given system state.
This may also reduce the number of overall rules. A complete single rule Ri with conditional
part and consequence part is denoted by

Ri =
{

g
(1)
i (x), g

(2)
i (x), . . . g

(NF )
i (x), Ω1, Ω2, . . . ΩNΩ

}
(9.17)

=
{

g
(1)
i (x), g

(2)
i (x), . . . g

(NF )
i (x), ~Ω(Ri)

}
.

9.2.4.2 Computation of the Controller Decision

For a given system state, we compute the superposition of the weighted output consequence
parts of all rules. The system state is represented by the actual feature vector

~x =
(

x1 x2 . . . xNF

)T (9.18)

of NF feature values. Then we compute the degree of membership φi(xω) = g
(ω)
i (xω) of the

ω-th feature of rule Ri for all Nr rules and all NF features. The multiplicative superposition
of all these values as ”AND”-operation leads to the total degree of membership

φi(~x) =
NF∧
ω=1

g
(ω)
i (xω) =

NF∏
ω=1

1

σ
(ω)
i

√
2π

exp

{
−(xω − µ

(ω)
i )2

2σ
(ω)2

i

}
(9.19)

for rule Ri. For all Nr rules together, the corresponding values φi(~x) are collected in a mem-
bership vector

~φ(~x) =
(

φ1(~x) φ2(~x) . . . φNr(~x)
)
. (9.20)

Next, we construct a matrix C
e

NF×Nr of the weighted consequences ~Ω(Ri), i ∈ {1, . . . , Nr}, of

all rules by using the weighted consequence vectors for all individual rules Ri. This yields

C
e

NF×Nr =
[

~Ω(R1) ~Ω(R2) . . . ~Ω(RNr)
]
. (9.21)

Now, we can compute the weight vector ~Ψ by multiplying the membership vector ~φ(x) by the
transposed matrix C

e

T :

~Ψ = ~φ(~x) · C
e

T =
(

Ψ1 Ψ2 . . . ΨNΩ

)
. (9.22)

The vector ~Ψ contains the superpositioned weight values for all NΩ possible scheduling strat-
egy recommendations, that is, ~Ψ ∈ RNΩ .
Finally, we choose the scheduling strategy with the highest overall value as the output of the
rule base system by

arg max
1≤h≤NΩ

{
~Ψh

}
. (9.23)



9.2. RULE BASED SCHEDULING SYSTEMS 111

9.2.4.3 Michigan Approach

Within the Michigan approach each individual during the evolutionary optimization repre-
sents a single rule. The coding of the object parameters of such a rule Ri are shown in
Equation 9.24. Each object vector ~ok of individual ak that represents the i-th rule consists of
NF pairs (µ(ω)

i , σ
(ω)
i ) each specifying the GMF of the ω-th feature. Further, each individual

consists of a vector ~Ω that specifies the weights of the output recommendation for the NΩ

possible scheduling strategies.

~ok = {

Ri︷ ︸︸ ︷
µ

(1)
i , σ

(1)
i︸ ︷︷ ︸

GMF

, µ
(2)
i , σ

(2)
i , . . . µ

(NF )
i , σ

(NF )
i , ~Ω(Ri)︸ ︷︷ ︸

Ω1 ... ΩNΩ

} (9.24)

As mentioned above, we use a Symbiotic Evolution, as introduced by Juang et al. [88]. This
represents the Michigan approach and evaluates the different rules together as several rules are
needed to compose a complete rule base. However, all single rules are also competing with each
other during the evolution. Within this approach several problems need to be solved. First,
we must specify the procedure to build different Fuzzy systems. To this end, the similarity
of the various rules will be used. Second, the fitness assignment of individual rules must be
introduced. Both major problems are addressed next.

9.2.4.3.1 Similarity Measure for Rules An acceptable Fuzzy rule base is expected
to possess a good coverage, that is, the cross correlation between GMFs should be small.
Otherwise if only rules with a high cross correlation are combined the system may not be
able to cover most of the possible system states in an appropriate way. Therefore, a measure
of similarity is needed for the selection of rules during the evolutionary optimization process.

For the Symbiotic approach, a rule base RB is composed by Nr rules. In many cases, several
rules exist in a population that are centered on very similar configurations for the conditional
part. In order to combine only rules which represent different states within the system RB,
a similarity measure is needed. This similarity measure is used to build rule bases by incre-
mentally adding rules with the smallest similarity to the last added rule. Note that the first
rule is picked randomly.

Specifically, we define the similarity of two rules by the cross correlation of the corresponding
GMFs. This cross correlation ϕg1g2 of two GMFs g1(z) and g2(z) for one feature can be
computed by Equation 9.25.

ϕg1g2 =

∞∫
−∞

g1(z) · g2(z) dz =
1

√
2π

√
σ2

1 + σ2
2

exp
{
−(µ1 − µ2)2

2(σ2
1 + σ2

2)

}
(9.25)

For two rules Ri and Rj with NF features we compute the cross correlation by averaging the
cross correlation over all features as shown in Equation 9.26.



112 CHAPTER 9. SCHEDULING SYSTEMS

ϕRi,Rj =
1

NF

NF∑
ω=1

∞∫
−∞

g
(ω)
i (z) · g(ω)

j (z) dz

=
1

NF ·
√

2π

NF∑
ω=1

exp

−(µ(ω)
i − µ

(ω)
j )2

2(σ(ω)2

i + σ
(ω)2

j )

√
σ

(ω)2

i + σ
(ω)2

j

(9.26)

Remember that for our Symbiotic Evolutionary Algorithm the number of features NF remains
constant during the whole optimization process.
Based on ϕRi,Rj , we compose the rule bases as shown in Figure 9.4. Intuitively, only those
rules are combined to a rule base which have a small similarity. Thus, we try to ensure a
high degree of diversity between rules within the rule bases and a high coverage of the feature
space.

Individual 1

Individual 2

Individual k

Individual N
r-1

Individual N
r

R
1

R
2

R
k

R
Nr-1

R
Nr

R
k

R
Nr-1

R
2

R
Nr

R
2

R
k

R
1

R
Nr-1

… …

… …

Base 1

Base N
f

Individual 1

Individual 2

Individual k

Individual N
r-1

Individual N
r

R
1

R
2

R
k

R
Nr-1

R
Nr

R
k

R
Nr-1

R
2

R
Nr

R
2

R
k

R
1

R
Nr-1

… …

… …

Base 1

Base N
f

Figure 9.4: Composition of rules to rule systems by Juang et al. [88].

9.2.4.3.2 Fitness Assignment The fitness assignment for all individuals within a gener-
ation is obtained by Algorithm 9.3 where Nf and Nr are the number of bases and the number
of rules per base respectively. Note that we assume that the child population Qt,λ with λ
individuals (rules) must be evaluated.

The algorithm generates Nf rule bases RBn, n ∈ {1, . . . , Nf}, by selecting in each case Nr

rules from the current child population. During this selection, the total cross correlation
between rules is used. The fitness of a rule Ri is calculated by summing the Nr-th part of the
fitness of the N

(i)
s rule bases where Ri participated divided by the number of participation of

Ri.
We subtract the resulting fitness f(Ri) of a single rule Ri from a pre-defined maximum value
fmax to achieve a minimization problem. Then, we are consistent with the scheduling objective
functions which also must be minimized.
Formally, the fitness assignment f(Ri) of rule Ri is given by

f(Ri) = fmax −
1

N
(i)
s

N
(i)
s∑

n=1

fn(Ri)
Nr

. (9.27)



9.2. RULE BASED SCHEDULING SYSTEMS 113

Algorithm 9.3 Fitness assignment for the Symbiotic Evolutionary Algorithm.
f(Ri) = 0 ∀i ∈ {1, . . . λ};
N

(i)
s = 0 ∀i ∈ {1, . . . λ};

for (n = 1 to Nf ) do
S = Qt,λ;
RBn = ∅;
Ri is selected randomly from S;
S = S\Ri;
RBn = RBn ∪Ri;
for (a = 1 to (Nr − 1)) do

Select Rj ∈ S with Rj = arg min
Rk∈S

{ϕRi,Rk
};

RBn = RBn ∪Rj ;
S = S\Rj ;
Ri = Rj ;

end for
fn ← evaluate(RBn);
f(Ri) = f(Ri) + fn/Nr ∀Ri ∈ RBn;
for (i = 1 to Nr) do

if (Ri ∈ RBn) then
N

(i)
s = N

(i)
s + 1;

end if
end for

end for
f(Ri) = f(Ri)/N

(i)
s , i ∈ {1, . . . , λ};

In Equation 9.27, fn(Ri) denotes the temporal fitness assignment that is determined by the
overall performance of the n-th Fuzzy System of all N

(i)
s bases in which Ri participated during

the population evaluation process. Usually, it can be assumed that a fair fitness evaluation of
the whole population is only guaranteed if the number of participations within the rule bases
is constant for all rules within the population. To ensure that this condition is obeyed, we
also allow the composition of rules to rule based systems which may have a high degree of
similarity. This is only applied, if a rule is very similar to another rule, but has not participated
sufficiently enough in different rule bases.
Before we detail the used Evolution Strategy we focus on two major subproblems during the
application of the Symbiotic Evolution of Fuzzy systems. First, we will introduce the concept
of a default output decision and second the selection of rules from the current population,
by using a cluster mechanism, in order to ensure a good coverage of the feature space in the
next generation.

9.2.4.3.3 Default Output Decision Unfortunately, Fuzzy control systems may lead to
controller scattering. In some cases, the system may initiate a change of output even for
a minimal input parameter (feature) variation. To avoid frequent switching between two
output decisions, we introduce a threshold for the activation of a controller output. Then, the
output of the system is only determined by the output corresponding to the superpositioned
membership value if the total degree of membership value exceeds a pre-defined constant



114 CHAPTER 9. SCHEDULING SYSTEMS

threshold level. Otherwise, a standard output is used.
Using a normalized GMF the feature encoding enables the establishment of a default value
by selecting a large σ

(ω)
i for the corresponding feature ω. This modeling of a default value is

now combined with the above mentioned thresholds.
The threshold value and the default output are part of an evolutionary optimization process.
They are encoded in a single chromosome of a second population of default value individ-
uals that is optimized in parallel. The evaluation of the two populations is performed in
combination, see Section 9.2.4.3.5.

9.2.4.3.4 Selection by Clusters Selection is an important operator for Evolutionary
Algorithms because it controls the diversity of the whole population. The selection operator
is able to conserve good solutions for multiple generations. In our case, a rule base should
cover most of the possible system states. Furthermore, the population of an Evolutionary
Algorithm should also keep and improve those rules that describe niches within the feature
space. Therefore, a special selection mechanism has been developed that does not only refer
to the individuals’ fitness but also to their degree of coverage within the feature space, see
Algorithm 9.4.
As mentioned above, a rule’s position in the NF -dimensional feature space is determined by
its GMF-µ(ω)

i -value. To ensure a good coverage of most of the possible system states it is
sufficient to consider only the clusters of the GMF centers. Therefore, we restrict our analysis
to the identification and clustering of similar GMF-µ(ω)

i -values of the population. For the
determination of clusters we apply the computationally efficient k-Means algorithm with an
exchange method as proposed by Späth [149].
Note that the fitness of a cluster is determined by the mean of the C best individuals or
all individuals in case that a single cluster consists of less than C individuals. Note that we
address the minimization of the fitness objective. This fitness calculation allows the selection
of individuals with a good fitness value even if the majority of the cluster members have a
very bad fitness. Algorithm 9.4 by µs describes the number of rules that must be selected
over all clusters. µi describes the number of rules that are selected from the i-th cluster. Of
course this must be an integer value and hence we round to the next integer value. For our
evaluation we have chosen k = 10 and C = 5.

9.2.4.3.5 Configuration of the Symbiotic Evolutionary Algorithm Different mod-
ifications of Evolution Strategies have been developed for parameter optimization. Here, we
have chosen a (µ + λ)-Evolution Strategy. The specification of the µ and λ values is closely
connected to the parameter values for the Symbiotic Approach.

Population Size Note that the variables µ and λ correspond to an Evolution Strategy in
this section. The number Nr of rules that form a Fuzzy System is static for the Symbiotic
Approach and must be chosen at the beginning of the optimization. After applying several
experiments with different values of Nr we have selected Nr = 50. The resulting systems
have shown a higher performance than systems with a different number of participating rules.
As no rule exists twice in a Fuzzy System, each population must consist of at least µ = 50
potential rules. As recommended by Schwefel [136], the ratio of µ/λ = 1/7 should be used for
the Evolution Strategy. This results in λ = 350 child individuals in the evolutionary process.
Hence, 350 individuals must be evaluated within each generation.



9.2. RULE BASED SCHEDULING SYSTEMS 115

Algorithm 9.4 Selection Strategy.
Determine k clusters {c1, . . . , ck} of all rules R1, . . . , RNr in the population Qt,λ based on
their GMF-µ(ω)-values.
for (i = 1 to k) do

Compute the mean fitness f̄(ci) for cluster ci by selecting the b = min{|ci|, C} individuals
{R1, . . . , Rb} ∈ ci with the best fitness according to

f̄(ci) =
1
b

b∑
l=1

f(Rl)

{Here, C represents the number of individuals that are used to determine the mean of
the fitness of individuals in all clusters.}

end for
for (i = 1 to k) do

Add µi individuals from ci to Pt+1,µ with

µi =

⌊
µs

f̄(ci)
∑k

l=1 1/f̄(cl)
+ 0.5

⌋

end for
while (|Pt+1,µ| ≤ µs) do

Select best Ri from the remaining individuals according to the best cluster. If several
individuals exist in the best cluster, select the individual with the best fitness;
Pt+1,µ = Pt+1,µ ∪Ri;

end while

As proposed by Juang et al. [88], we must ensure that every rule within the population
participates sufficiently enough in Fuzzy Systems. In our work, we assume that it is possible
to determine the fitness of a rule if it is part of exactly Ns = 10 Fuzzy systems. Consequently,
we must evaluate Nf = 350·10

50 = 70 rule bases in each generation. This results in 70 simulations
for each generation. Within this work, we used 40 generations for all Genetic Fuzzy approaches
in order to develop the Fuzzy systems within a reasonable amount of computational time.
The analysis of the achieved results and the improvements of the last generations regarding
the given objective function have shown that 40 generations are appropriate to our problem.

Recombination Operator The recombination operator and also the mutation operator
of the next section modify the individual rules during the evolutionary process. To this end,
the encoding scheme of Section 9.2.4.1.2 is used.
We haven chosen discrete multi-recombination as recombination operator, see Section 3.1.4.
Here, we recombine ρ = 12 parents to one new offspring. However, those 12 parents are not
all randomly selected from the current population. We select ρ/2 = 6 parents with a very
high degree of similarity and the remaining ρ/2 = 6 parents randomly. This ensures that
the recombination operator leads to new rules in other areas of the feature space while still
covering the already explored areas of the feature space. Hence, this procedure reflects the
compromise between exploration and coverage of the feature space.
Note that the recombination does not affect any parameter of the mutation, which is described



116 CHAPTER 9. SCHEDULING SYSTEMS

next.

Mutation Operator For the mutation operator, we have selected the commonly accepted
Mutation Success Rule as proposed by Rechenberg [126], see Section 3.1.5.1. Note that in our
work a mutation is called successful if a recombined and mutated offspring is better than a
randomly selected parent from the ρ parents. During the application of the Mutation Success
Rule the value of α = 0.817 is used as recommended by Rechenberg. In this work, we use
a relatively large population for the Evolutionary Algorithm. The original Mutation Success
Rule was developed for the (1+1)-Evolution Strategy [126]. It is considered, for instance, by
Deb [27] that the usually optimal ratio 1/5 is too optimistic in case of such a configuration.
In order to avoid a continuous reduction of the mutation step size, we have decreased the
optimal success rate to 1/8.

Population for Default Values As described above, we use default values to optimize the
behavior of the Fuzzy system, see Section 9.2.4.3.3. To this end, we generate a second popula-
tion of default value individuals that is evolutionary optimized in parallel to the optimization
of the Fuzzy rules. Therefore, we introduce a new species of real-value coded individuals that
describe a certain threshold and a recommended output decision which is used as default
value. This recommended scheduling strategy is used to generate the next schedule if the
superpositioning of all rules within the Fuzzy System generates a value that is smaller than
the defined threshold. Due to this additional population the whole procedure can be consid-
ered as a Cooperative Coevolutionary Algorithm [121] approach, as a default value individual
will participate in each generated Fuzzy System. Both populations exist genetically isolated
within the ecosystem, that is, individuals will only mate with other members of their own
species. By evolving both species in different populations these mating restrictions are always
obeyed.
The default value population consists of Nf individuals for the offspring generation. This
is reasonable, as the evaluation of the Fuzzy rules require Nf temporarily Fuzzy systems.
Each of these Fuzzy systems includes one default value. Hence, the corresponding population
should also consists of Nf = 70 individuals. By applying the recommendation of Schwefel [136]
(µ/λ = 1/7) this leads to a (10+70)-Evolution Strategy. So, each individual participates in
one Fuzzy system which is generated for the Symbiotic fitness evaluation.
For the actual fitness evaluation, the two populations must cooperate. Once a Fuzzy system
has been generated by composing it from rule individuals, a single default value is added to
this system, and the overall performance is evaluated by simulation. The assigned fitness value
for the default value individual is equal to the performance of the Fuzzy system in which this
individual has participated. Note that the fitness value of the rule population is influenced
by the default value individuals. So, this cooperation may lead to better rule individuals and
default value individuals as well. For the default value population, we apply the ”two-point
rule” of Rechenberg [12] with α = 0.8 and do not use recombination.

9.2.4.4 Pittsburgh Approach

Within the Pittsburgh approach, each individual represents a complete rule base, and conse-
quently interaction among individuals does not occur. In opposite to the Michigan approach,
the rule reduction within the different rule bases is easier with the Pittsburgh approach. Here,



9.2. RULE BASED SCHEDULING SYSTEMS 117

the number of rules can be encoded using an endogenous strategy parameter during the evo-
lution. Further, using individuals that represent complete rule bases with differing numbers
of rules, the decoding of individuals must be changed as a positional representation cannot
be applied anymore.
For each individual we specify the number of rules Nr at the beginning. However, this rule
number Nr will not evolve in all of our evolutionary optimizations. Thus, a rule based schedul-
ing system with a constant number of rules can also be modeled using the later presented
encoding. Furthermore, we construct a complete rule base RB with Nr rules as given in
Equation 9.15. A single rule consists of 2 ·NF elements per rule within the conditional part.
Additionally, we include the vector ~Ω(Ri) for the consequence part, which consists of NΩ = 13
elements. Therefore,

~ok = {Nr,

R1︷ ︸︸ ︷
µ

(1)
1 σ

(1)
1︸ ︷︷ ︸

GMF

, . . . , µ
(NF )
1 σ

(NF )
1 , ~Ω(R1)︸ ︷︷ ︸

Ω1 ... ΩNΩ

,

R2 ... RNr︷ ︸︸ ︷
µ

(1)
2 σ

(1)
2 , . . . , µ

(NF )
Nr

σ
(NF )
Nr

, ~Ω(RNr)} (9.28)

is the coding scheme of the object parameter vector ~ok of individual ~ak which is a complete
rule base. Hence, the number of elements u within the object parameter vector ~ok of the
individual ~ak can be computed by

u = 1 + Nr · (2 ·NF + NΩ). (9.29)

If we used the same number of rules as for the Michigan approach (Nr = 50, NF = 7, NΩ =
13), each individual within the Pittsburgh approach would consist of 1+50 ·(2 ·7+13) = 1351
object parameters. Such a problem size requires well defined genetic operators as the search
space is large. However, the fitness assignment process is relatively easy compared to the
Michigan approach.

9.2.4.4.1 Reducing the Number of Rules As mentioned above, the reduction of rules
within individual rule bases is relatively easy using the Pittsburgh approach. This procedure
potentially leads to a smaller set of rules that is able to cover a similar feature space as
rule bases with many more rules. Furthermore, the number of conflicting or neutral rules
might decrease. Moreover, this attempt of adapting the number of necessary rules solves the
underlying initial problem, as a good number of rules for the rule bases is not known in
advance.
In many research projects the reduction of the number of rules within Fuzzy systems has been
discussed, see, for example, Jin et al. [88] or Cordón et al. [24]. However, all these approaches
require the availability of training data in order to determine the coverage and the quality of
the resulting Fuzzy rule bases after removing several rules. Hence, those approaches are not
suitable to our problem as we do not have such training data.
Here, we apply the concept of modifying the selection operator during the evolutionary op-
timization. Within a first approach, we modify the fitness of individuals depending on their
number of rules. Then, the selection is not only based on the original performance but also on
the size of the rule bases. In a second approach, we modify the selection operator such that
it prefers rule bases with fewer rules in all cases where rule bases have the same fitness value.
As already introduced in Equation 9.28, the number of rules within a rule base is encoded
by Nr which is part of the objective parameter vector of each rule base and hence can be



118 CHAPTER 9. SCHEDULING SYSTEMS

used directly for the two approaches described above. However, we use the parameter Nrmax

to specify an upper bound for the number of rules. Hence, Nr can only be varied between 1
and Nrmax (1 ≤ Nr ≤ Nrmax).

9.2.4.4.2 Modifying the Fitness Function In the following, we assume that the fitness
of an individual ak during the evolutionary optimization is given by fobj(ak). To this end, the
objective functions derived in Chapter 8 are used to calculate this value.
The rule reduction strategy modifies this value to generate a new fitness value fnew(ak) as
shown in Equation 9.30.

fnew(ak) = fobj(ak)−
β

N
(ak)
r

(9.30)

Note that we assume a minimization problem. Thus, a small number of rules Nr for a given
individual ak leads to a decrease of the fitness of the rule base specified by ak and hence
emphasizes the quality of this rule base.
The parameter β must be chosen carefully. If this value is too large, the objective minimization
becomes less important than the rule base reduction. However, if β is too small, the original
objective definition is dominating, which potentially leads to rule bases that consist of many
rules.
The major drawback of this approach to reduce the number of rules within the rule bases is
the definition of the parameter β. Hence, we also applied another approach of modifying the
selection strategy itself.

9.2.4.4.3 Modifying the Selection Strategy The normal selection operator within an
Evolution Strategy with κ =∞ simply chooses the best µ individuals from the set of µ parents
and λ offsprings. In Algorithm 9.5 the modification is detailed.
First, a pool P ′

t,2µ of 2µ of the best individuals regarding the objective function is generated
from all parent and offspring individuals. During this procedure, rules with a smaller num-
ber of rules are selected in cases where two rules with the same objective value are going to
be selected. Within our optimizations, such cases of equal objective values are observed fre-
quently as many individuals within some generations shared the same objective value. Hence,
this selection strategy really changed the resulting rule systems. The next parent generation
P(t+1),µ is generated by choosing the individuals from P ′

t,2µ with the smallest number of rules.
This selection procedure ensures that individuals with a good objective are selected by em-
phasizing rule bases that consist of a small number of rules. The described procedure should
only be considered as an example to modify the selection operator. Other values as 2µ could
be chosen during the first selection.

9.2.4.4.4 Configuration of the Evolution Strategy This section provides the details
of the settings for the Evolution Strategies that are applied to the various modifications based
on the Pittsburgh approach.
Within the Pittsburgh approach, the individuals have larger object parameter vectors com-
pared with the Michigan approach. Hence, we adapted the genetic operators as well as
the number of individuals. To this end, we have chosen a non-isotropic mutation, see Sec-
tion 3.1.5.2.2, as this allows the individual adaptation of the mutation for the different dimen-
sions. Therefore, each object parameter of the individuals consists of a corresponding strategy



9.2. RULE BASED SCHEDULING SYSTEMS 119

Algorithm 9.5 Modified selection operation during the Evolution Strategy.
P ′

t,2µ = ∅;
F ← {Pt,µ ∪ Qt,λ};
while (|P ′

t,2µ| < 2µ) do
ak ← arg min

ai∈F
fobj(ai);

al ← arg min
ai∈{F\ak}

fobj(ai);

if (fobj(ak) = fobj(al)) then
if (N (ak)

r ≤ N
(al)
r ) then

P ′
t,2µ ← P ′

t,2µ ∪ ak;
F ← F\ak;

else
P ′

t,2µ ← P ′
t,2µ ∪ al;

F ← F\al;
end if

else if (fobj(ak) < fobj(al)) then
P ′

t,2µ ← P ′
t,2µ ∪ ak;

F ← F\ak;
else

P ′
t,2µ ← P ′

t,2µ ∪ al;
F ← F\al;

end if
end while
P(t+1),µ ← select µ individuals from P ′

t,2µ regarding to their number of rules Nr;

parameter that specifies its mutation strength. Further, we apply a standard Evolution Strat-
egy with µ = 3 parent and λ = 21 offspring individuals. The ratio of 1/7 is suggested by
Schwefel [135]. The values of µ and λ are much smaller compared with the Michigan ap-
proach. However, for the Pittsburgh approach, we do not need several Fuzzy systems in order
to evaluate individual rules. Hence, it is possible to reduce the number of Fuzzy systems, that
is equivalent to the number of individuals. Furthermore, these smaller µ and λ values lead to
less necessary simulations and hence to a quicker development of the rule bases.
During the application of the Evolution Strategies we do not use any recombination. Espe-
cially, if the number of rules differs between the individuals within a generation, a reasonable
recombination is hard to describe as a positional recombination cannot be applied.
Each optimization is based on 40 generations. The first 3 individuals are randomly initial-
ized. Thus, our (3+21)-Evolution Strategy leads to 3 + (40 · 21) = 843 evaluations for the
development of a single rule base.

Configuration for the Optimization with the unmodified Pittsburgh Approach
Within the unmodified case, we use a constant number of rules Nr = 10 for each rule base.
This rule number is less than the Nr = 50 rules used within the Michigan approach. However,
the usage of 50 rules would lead to very large individuals, as shown in Section 9.2.4.4 and
the achieved results would highly depend on the selected genetic operators. Further, as a
whole rule base is evolving over time, it can be expected that fewer rules fit to the underlying



120 CHAPTER 9. SCHEDULING SYSTEMS

problem. In the Michigan approach, rules are flexibly combined to rule bases which might
result in rule bases with some conflicting rules.
The constant number of rules leads to a constant number of object and strategy parameters
within each individual. Hence, u = Nr · (2 · NF + NΩ) = 10 · (2 · 7 + 13) = 270 parameters
must be determined. Thus, the two exogenous learning rates for the non-isotropic mutation,
see Section 3.1.5.2.2, are defined as:

τ0 =
1√
2 · u

= 0.043, and (9.31)

τ1 =
1√
2
√

u
= 0.174. (9.32)

Configuration for the Optimization using a Modified Fitness Function For this
approach, the introduced Evolution Strategy is modified. First, the number of rules within
each individual is a variable. However, we limit the number of rules as we allow at most
Nrmax = 30 rules within a rule base. Thus, the largest rule bases consist of

u = Nrmax · (2 ·NF + NΩ) = 30 · (2 · 7 + 13) = 810 (9.33)

parameters. Hence, we need to adapt the learning rates for the non-isotropic mutation by:

τ0 =
1√
2 · u

= 0.025, and (9.34)

τ1 =
1√
2
√

u
= 0.133. (9.35)

As given in Equation 9.30, we need to define the parameter β that describes the influence
of the rule base size to the resulting objective value. The setting of β highly depends on
the original objective values. As we do not have deeper knowledge about reasonable values,
we applied the following heuristic to determine our β. For all available workloads we used
the achieved scheduling results by using the EASY scheduling strategy. Then we calculated
the objective function values for these results using Equation 8.24. Finally, we calculated the
average of these objectives by ignoring the objective calculated for the SDSC00 workload.
This workload leads to scheduling results that drastically differ from the results achieved for
all other workload traces. The final β-value is set to the half of the average objective value,
that is β = 50000. Of course, this β-value needs to be modified for other objective functions.

Configuration for the Optimization using a Modified Selection Strategy For the
optimizations with the modified selection strategy we used the same Evolution Strategy and
parameter settings as in the previous approach (of course without β). During the optimizations
we frequently encountered a premature convergence by using a normal plus strategy. Hence,
we used κ = 4, see Section 3.1, to limit the lifetime of individuals. We determined this value
of κ by several simulations with different κ settings. Overall, the usage of a limited lifetime
of individuals highly improved our results.



9.2. RULE BASED SCHEDULING SYSTEMS 121

9.2.4.5 Coevolutionary Genetic Fuzzy System Development

As presented in Section 9.2.2, for each scheduling state the rule based scheduling system needs
to determine a corresponding sorting criterion and a scheduling algorithm. In the previously
introduced rule based scheduling systems, a whole scheduling strategy, consisting of both a
sorting criterion and a scheduling algorithm, was assigned to the different scheduling states.
However, this combined assignment is not necessary. Moreover, the assignment of the same
sorting criterion to two scheduling states within the feature space does not always lead to the
assignment of the same scheduling algorithm. This motivates the usage of a Coevolutionary
Algorithm as the assignment problem can easily be decomposed into two subproblems.

9.2.4.5.1 Concept of Cooperative Coevolutionary Algorithms Coevolutionary Al-
gorithms potentially lead to better solutions compared with standard Evolutionary Algo-
rithms, if the problem can be decomposed into two subproblems, see, for example, Jansen
et. al [85]. Furthermore, Potter and De Jong [124] have proven that Coeveolutionary Algo-
rithms achieve better results with fewer generations compared with standard evolutionary
optimization techniques.
In this work, we apply the commonly called Cooperative Coevolutionary Algorithm (CCA),
see Paredis [121]. This model uses two distinct species. Both species are genetically isolated.
Hence, the genetic operations are only applied to individuals of the same species. The two
different species are evolved in two different populations in parallel by using standard Evolu-
tion Strategies. However, during the fitness evaluation, two individuals of each species must
cooperate. In general, this concept allows a larger number of species. Figure 9.5 provides an
overview of the Cooperative Coevolutionary Algorithm concept.

EA

Species 2

Population

EA

Species 1

Population

Cooperation

Individual Individual

Problem Domain

Model

Simulation

Fitness Fitness

Figure 9.5: General concept of a Cooperative Coevolutionary Algorithm with two species.

Algorithm 9.6 describes the concept in more detail. First, two species with µ individuals each
are randomly generated. Then, the individuals of both species are evaluated by randomly
combining two individuals, one from each species. Note that other selection schemes are also
possible and discussed in the literature, see, for example, Panait et al. [120]. However, those



122 CHAPTER 9. SCHEDULING SYSTEMS

Algorithm 9.6 CCA based on a (µ + λ)-Evolution Strategy.
for (s = 1 to 2) do

P
(s)
0,µ ← initialization with µ individuals, P

(s)
0,µ ∈Mµ(I);

end for
Evaluate

(
P

(1)
0,µ , P

(2)
0,µ

)
by combining their individuals randomly;

{Each individual is evaluated exactly once.}
t← 0;
repeat

for (s = 1 to 2) do
Q

(s)
t,λ ← generate λ new individuals from P

(s)
t,µ by performing self-adaptive coordinate

wise mutation, Q
(s)
t,λ ∈Mλ(I);

{We do not use recombination (ρ = 1) and use a plus-strategy (κ =∞)}
end for
Evaluate

(
Q

(1)
t,λ , Q

(2)
t,λ

)
by combining their individuals randomly;

{Each individual is evaluated exactly once.}
for (s = 1 to 2) do

P
(s)
(t+1),µ ← select(P (s)

t,µ ∪Q
(s)
t,λ);

end for
t← t + 1;

until termination condition;

methods need more evaluations and additional simulations in our case. In order to avoid this
effort, we use our simple heuristic. After evaluation, the genetic operators produce λ offsprings
for each species separately. Then, the resulting offspring individuals are again evaluated by
a randomly chosen cooperation. Finally, normal evolutionary selection determines the next
parent generation.

9.2.4.5.2 Rule Based Scheduling Development by applying Coevolutionary Al-
gorithms As mentioned above, our scheduling problem can be decomposed into two sep-
arate subproblems. This concept is shown in Figure 9.6. Contrary to the general rule based
scheduling, see Figure 9.1, we use two separate rule bases within the same feature space. One
determines the sorting criterion depending on the system state and the other calculates the
scheduling algorithm. However, the partitioning of this feature space differs between the two
species. To this end, the different GMF-µ(ω)

i and GMF-σ(ω)
i values are determined separately

for the two species. The resulting scheduling system is expected to react very accurately on
certain system states.
Such a coevolutionary approach yields several potential advantages for the resulting scheduling
system and for the extraction process of appropriate rule bases.
First, each of the two separate rule bases has fewer output recommendations. In detail, for the
sorting criterion as well as for the scheduling algorithm, we have only NΩ = 4 possible output
recommendations instead of 13 as in the combined scenario. This reduces the length of the
individuals within the populations and enables a better and faster adaptation. However, note
that the sorting criterion is redundant if the Greedy scheduling algorithm is selected since
Greedy includes its own sorting. Second, as the feature space partition can be optimized for



9.2. RULE BASED SCHEDULING SYSTEMS 123

Controller

Classification

R
u

le
S

el
ec

ti
o
n

R
u

le
A

p
p
licatio

n

Rule Base Scheduling

…R2 R3
RNrR1

Rule Base Sorting

…R2 R3
RNrR1

Scheduling

Algorithm

Sorting

Criterion

Scheduling

Algorithm

Scheduling System

m

T
im

e

Current

Schedule

Current

Waiting-Queue

Machines
S

o
rt

in
g

C
ri

te
ri

o
n

O
rd

er
o

f

E
x
ec

u
ti

o
n

Past Scheduling

Decisions

Controller

Classification

R
u

le
S

el
ec

ti
o
n

R
u

le
A

p
p
licatio

n

Rule Base Scheduling

…R2 R3
RNrR1

Rule Base Sorting

…R2 R3
RNrR1

Scheduling

Algorithm

Sorting

Criterion

Scheduling

Algorithm

Scheduling System

m

T
im

e

Current

Schedule

Current

Waiting-Queue

Machines
S

o
rt

in
g

C
ri

te
ri

o
n

O
rd

er
o

f

E
x
ec

u
ti

o
n

Past Scheduling

Decisions

Figure 9.6: General concept of the rule based scheduling approach with dedicated rule bases
for scheduling algorithm and sorting criterion.

both species separately, fewer rules might be required for each species.

Configuration of the Evolution Strategies The Evolution Strategies for both popula-
tions are identical. We apply the Pittsburgh approach with the same genetic operators and
no recombination for both populations. In detail, we use a constant number of rules Nr = 10
and a (3+21)-Evolution Strategy for both populations. The optimization is limited to 40
generations. Consequently, each individual within the populations consists of

u = Nr · (2 ·NF + NΩ) = 10 · (2 · 7 + 4) = 180 (9.36)

object parameters. Hence, we adapt the learning rates for the non-isotropic mutation by:

τ0 =
1√
2 · u

= 0.053, and (9.37)

τ1 =
1√
2
√

u
= 0.193. (9.38)



Chapter 10

Evaluation of the Generated
Scheduling Strategies

In the following, we present the scheduling results that are generated using the different
strategies presented in the previous chapter. First, the Greedy scheduling strategy results
will be discussed. Only during this discussion, we compare some strategies resulting from
the optimizations of the region based and the linear objective functions. After this, only
the linear objective function is applied for our comparisons. Second, we present the results
corresponding to all rule based scheduling strategies in detail. Finally, we compare all of our
developed approaches and discuss the corresponding recommendations for the different usage
scenarios.
For all evaluations, we execute discrete event simulations using the scaled workload traces, see
Chapter 5. As mentioned above, we apply the two objective functions derived in Chapter 8.
Some of the achieved results are presented relative to the EASY standard scheduling strategy
introduced in Section 4.4. We compare them to EASY as this strategy performs best regarding
the defined objective function for the majority of the workload traces, see Appendix F. The
performance of CONS is similar to the performance of EASY for most of the workloads. FCFS
always performs worse compared with EASY and CONS.
This relative measurement provides the potential improvements that can be achieved in real
environments in comparison to the frequently used strategy EASY . For each objective O and
a developed strategy str we define the relative value O[%] as described in Equation 10.1.

O[%] =
OEASY −Ostr

OEASY
· 100 (10.1)

Note that for all average weighted response times and the objective function values a positive
O[%] describes that the new scheduling strategy str is better than EASY as all of those
objectives must be minimized. However, for the utilization (UTIL) this is different, as this
objective has to be maximized. Hence, in this case a positive value of O[%] shows that the
EASY is superior.
Furthermore, we present our achieved results relative to the Pareto front of all feasible sched-
ules for the simulated workloads. Noteworthy, the Pareto front is generated off-line and it
cannot be taken for granted that this front can be reached by our proposed online schedul-
ing strategies at all. Therefore, we refer to this front as a reference for the best achievable
solution. As explained in Chapter 7, our Pareto front is only an approximation as it is de-

124



10.1. GREEDY SCHEDULING STRATEGY 125

rived by heuristics. Although we do not know the real Pareto front, the high diversity of our
approximation indicates that the quality of the approximation is very good.
During most of our evaluations, we use the defined linear objective function, see Equation 8.24,
to characterize the scheduling results. However, this is problematical in all cases where the
scheduling strategies were optimized using the region based objective function. The main
problem arises from the fact that the solutions within the preferred region, see Section 8.2.1,
are of equal importance to the machine provider whereas the different basic scheduling ob-
jectives vary. Hence, we only use the linear scheduling objective in order to demonstrate that
scheduling strategies, which were optimized using the region based approach, improve the
scheduling outcome in comparison to the EASY.

10.1 Greedy Scheduling Strategy

The absolute results for the adapted Greedy scheduling strategy, as explained in Section 9.1,
are given in Table 10.1 for the CTC workload trace. The detailed results of all Greedy adap-
tations for all workload traces are given in Appendix H. Note that the presented results
correspond to the best Greedy strategy using the CTC workload trace. This best strategy
was achieved by parameterizing the sorting criterion defined in Equation 7.3. Furthermore,
this sorting criterion performed best in all of our different optimization approaches using the
Greedy approach.

Type Method AWRT AWRT1 AWRT2 AWRT3 AWRT4 AWRT5 UTIL fobj

SOPT
(CTC)

linear 55236.17 52755.80 61947.65 56275.18 54017.23 35085.84 66.99 775348.55

SOPT
(CTC)

region 55444.01 53569.68 63350.92 58753.23 51106.22 37509.74 66.99 789100.50

ALLOPT linear 55301.26 55104.02 61644.73 56354.42 53310.46 34913.51 66.99 797619.16

EASY 53186.81 59681.28 64976.07 50317.47 46120.02 31855.68 66.99 856717.01

Table 10.1: Results for the CTC workload trace based on the optimization using the CTC trace. All AWRT
values are given in seconds, the utilization (UTIL) in %.

Table 10.1 shows that the Greedy strategy outperforms the standard scheduling strategies
regarding the defined objective function. As one can see, the objective values for the Greedy
strategies trained using the region based and the linear objective functions perform better
than the EASY strategy. As discussed above, we cannot conclude that the Greedy strategy
optimized using the linear objective function performs better than the strategy that was
developed using the region bases objective function as our measure is the linear objective.
However, the results clearly indicate that the region based approach leads to a scheduling
strategy with a good behavior. The Greedy strategy that was developed using all workload
traces together (ALLOPT) performs better for the CTC workload than EASY.

Strategy AWRT[%] AWRT1[%] AWRT2[%] AWRT3[%] AWRT4[%] AWRT5[%] UTIL[%] fobj%

SOPT(CTC), linear objective

EASY -3.85 11.60 4.66 -11.84 -17.12 -10.14 0 9.50

SOPT(CTC), region based objective

EASY -4.24 10.24 2.50 -16.77 -10.81 -17.75 0 7.89

ALLOPT, linear objective

EASY -3.98 7.67 5.13 -12.00 -15.59 -9.60 0 6.90

Table 10.2: Relative results in % for the CTC workload trace.



126 CHAPTER 10. EVALUATION

The same results are presented in Table 10.2 relative to EASY. The Greedy strategy derived
with the linear objective function leads to an improvement of more than 9 %. The region based
approach results in an improvement of more than 7 % regarding the defined objective. The
Greedy strategy that is developed using all workload traces together improves the scheduling
result for the CTC workload trace by at least 6 %.

-50

-40

-30

-20

-10

0

10

20

CTC KTH LANL SDSC00 SDSC95 SDSC96

Workloads

O
b

je
c

ti
v

e
Im

p
ro

v
e

m
e

n
ts

in
%

region

linear

Figure 10.1: Relative results for the Greedy strategy (SOPT(CTC)) applied to all workloads.
The real results using the region based optimization approach are for KTH: -260 % and for
SDSC00: -400 %.

Figure 10.1 presents the results for all workload traces that were achieved using the Greedy
strategy that is optimized using the CTC workload trace. Again, the results for the region
based and the linear objective function approaches are given. The results indicate that the two
resulting Greedy strategies behave well for the CTC, LANL, and SDSC95 workload traces.
Both strategies fail for the KTH, SDSC00, and SDSC96 workload traces.
From these results we conclude that the Greedy strategies developed with both objective
functions behave similar. The different results for the SDSC00 and KTH workload traces may
result from the already mentioned problem that all solutions within the preferred region are
of equal quality in this approach. Thus, a more precise definition with smaller regions might
solve this problem. We therefore use the linear objective function in the remainder of this
work.

-20

-15

-10

-5

0

5

10

15

AWRT

[%]

AWRT

1[%]

AWRT

2[%]

AWRT

3[%]

AWRT

4[%]

AWRT

5[%]

UTIL[%]

Simple Objectives

Im
p

ro
v
e
m

e
n

ts
in

%

(a) CTC.

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

AWRT [%] AWRT

1[%]

AWRT

2[%]

AWRT

3[%]

AWRT

4[%]

AWRT

5[%]

UTIL[%]

Simple Objectives

Im
p

ro
v

e
m

e
n

ts
in

%

(b) LANL.

Figure 10.2: All simple objectives for the CTC and LANL workload traces. The results are
related to EASY and given in %. The algorithm is optimized for the CTC workload using the
linear objective function.



10.1. GREEDY SCHEDULING STRATEGY 127

Table 10.2 presents the results for all simple objectives. It can be observed that the rela-
tive AWRT values of user groups 1 and 2 are improved (the absolute values are decreasing).
However, this improvement which increases the objective function corresponds with a deteri-
oration of the AWRT values of all other user groups. Figure 10.2a shows this behavior for the
CTC workload trace. A very similar outcome can be observed for all other workload traces
with the CTC optimized Greedy strategy.

-50

-40

-30

-20

-10

0

10

20

30

C
TC

K
TH

LA
N
L

S
D
S
C
00

S
D
S
C
95

S
D
S
C
96

Workloads

O
b

je
c
ti

v
e

Im
p

ro
v
e
m

e
n

ts
in

%

SOPT (CTC)

ALLOPT

Figure 10.3: Relative results using the defined linear objective function.

Figure 10.2b displays these results for the LANL workload trace. One of the major results
from all these observations is the invariance of the utilization, see all results in Appendix H.
Figure 10.3 presents the relative results for all workload traces using the two Greedy strate-
gies that were optimized for the CTC workload trace and for all workloads together. Both
Greedy strategies perform better compared with EASY in most of the cases. However, the
Greedy strategies suffer for the KTH workload trace. The Greedy strategy that was optimized
using all workload traces is able to improve the scheduling results for the SDSC00 workload
traces. In this case, the CTC optimized Greedy strategy fails. Thus, as expected, the Greedy
strategy that was generated using all workload traces is more robust than the Greedy strategy
optimized for the CTC workload trace.

-4

-2

0

2

4

6

8

10

12

14

16

CTC KTH LANL SDSC00 SDSC95 SDSC96

Workloads

O
b

je
c
ti

v
e

Im
p

ro
v
e
m

e
n

ts
in

%

Figure 10.4: Relative results that are achievable for all workloads using one of the Greedy
strategies of the last generation that were optimized for the CTC workload trace.

Figure 10.4 presents an interesting observation made for the Greedy optimization using the
CTC workload trace only. We applied all Greedy strategies of the last population from the



128 CHAPTER 10. EVALUATION

optimization with the CTC workload trace to all workload traces. Figure 10.4 shows the best
scheduling results for each workload individually using one of those Greedy strategies. As
one can see, the scheduling outcomes are much better compared with the results presented in
Figure 10.3. Thus, an evolutionary optimization using a single workload trace leads to a set
of strategies that perform very well for other workload traces. For example, the scheduling
outcome of the SDSC00 workload traces improves by more than 35 % compared with EASY.

10.2 Rigid Rule Based Scheduling Systems

Next, we show the results of the first two of our rule based scheduling systems. Figure 10.5a
presents the objective improvements of the iterative and the probabilistic approaches for the
case that the scheduling strategies are optimized for each workload trace individually.

-140

-120

-100

-80

-60

-40

-20

0

20

40

60

CTC KTH LANL SDSC00 SDSC95 SDSC96

Workloads

O
b

je
c
ti

v
e

Im
p

ro
v
e
m

e
n

ts
in

%

Iterative

Probabilistic

(a) Objective function values.

-50

-40

-30

-20

-10

0

10

20

Iterative Probabilistic

Methods

O
b

je
c
ti

v
e

Im
p

ro
v
e
m

e
n

ts
in

%

AWRT

AWRT1

AWRT2

AWRT3

AWRT4

AWRT5

UTIL

(b) Simple objectives using the CTC workload
trace.

Figure 10.5: Relative results for both rigid rule based scheduling strategies and all workload
traces.

Figure 10.5a shows that the probabilistic approach is able to improve the objective value
for the CTC, the LANL, and the SDSC00 workload traces. The iterative approach has a
better performance than the probabilistic approach for the CTC and the LANL workload.
Here, the objective is improved by at least 15 %. However, in opposite to the probabilistic
approach, the iterative approach fails for the SDSC00 workload. In this case, the relative
objective is reduced by about 130 % whereas the probabilistic approach improves the relative
objective by about 40 % in this case. The detailed results are given in the Appendices I.1
and J.1. For the SDSC95 and the SDSC96 workload traces, the objectives do not vary much
for both approaches. Furthermore, using the iterative approach the objective for the KTH
workload trace decreases by about 9 % whereas the objective is nearly unchanged using the
probabilistic approach. Figure 10.5b presents the details of our 7 simple objectives using the
CTC workload trace. The results are given relative to the results achieved by using EASY.
Here, we can observe the same behavior as for the Greedy scheduling. The average weighted
response times for the user groups 1 and 2 decrease (the performance increases at around
10 %). In parallel, the user groups 3 to 5 must accept a worse average weighted response time.
Again, as observed for the Greedy scheduling strategy, the utilization is nearly constant.
In Figure 10.6a we show the achieved results by optimizing the iterative approach as well
as the probabilistic approach for the CTC workload trace and by applying the two resulting



10.2. RIGID RULE BASED SCHEDULING SYSTEMS 129

scheduling strategies to all workload traces. The detailed results are given in the Appen-
dices I.2 and J.2.

-100,00

-80,00

-60,00

-40,00

-20,00

0,00

20,00

Iterative Probabilistic

Method

O
b

je
c
ti

v
e

Im
p

ro
v
e
m

e
n

ts
in

%

CTC

KTH

LANL

SDSC00

SDSC95

SDSC96

(a) SOPT(CTC) applied to all workloads. Note that
the results for SDSC00 are cut. The real results are
for iterative: -358 % and for probabilistic: -425 %.

-45,00

-40,00

-35,00

-30,00

-25,00

-20,00

-15,00

-10,00

-5,00

0,00

5,00

Iterative Probabilistic

Method

O
b

je
c
ti

v
e

Im
p

ro
v
e
m

e
n

ts
in

%

CTC

KTH

LANL

SDSC00

SDSC95

SDSC96

(b) ALLOPT applied to all workloads. Note that
the results for SDSC00 are cut. The real results are
for iterative: -360 % and for probabilistic: -985 %.
Furthermore, the KTH results for the probabilistic
approach are also cut as the real result is -98 %.

Figure 10.6: The relative results of SOPT(CTC) and ALLOPT for both rigid rule based
scheduling strategies applied to all workload traces.

It can be observed that the performance of the scheduling strategy optimized for the CTC
workload trace also increases the performance of the scheduling systems using the LANL and
SDSC95 workload traces. However, these improvements are less than 3 % for the iterative rule
base scheduling strategy and less than 7 % for the probabilistic approach. The application of
the scheduling strategies developed using the CTC workload trace fail for the KTH, SDSC00,
and SDSC96 workload traces. In the case of the SCSC96 workload trace those changes are
less than 2 %. However, for the KTH and the SDSC00 workload traces, the performance is
drastically reduced compared with the results achievable by using EASY. Hence, a scheduling
strategy that is optimized for a single workload trace, using both rigid rule base approaches,
cannot be applied to other workload traces. The resulting scheduling system might perform
worse compared with the standard scheduling strategies.

Figure 10.6b presents the results that are generated by applying a scheduling strategy that
was developed using all available workload traces together. The ALLOPT scheduling strategy
was developed for both rigid approaches individually. The complete results can be found in the
Appendices I.3 and J.3. The results presented in Figure 10.6b show that the resulting strategy
for the iterative approach only slightly improves the objective for the SDSC96 workload.
However, for all other workloads, the objective is decreased. Especially for the KTH and
SDSC00 workload traces those objective reductions are larger than 30 %. The probabilistic
approach leads to schedules with a very low objective value. For the KTH and SDSC00
workload trace, the probabilistic approach is drastically worse compared to EASY. Thus, the
ALLOPT method should not be applied with the rigid rule based scheduling systems.



130 CHAPTER 10. EVALUATION

10.3 Scheduling Strategies based on Genetic Fuzzy Systems

Figure 10.7a shows the objective improvements of the scheduling strategies that are based
on Genetic Fuzzy systems and optimized for each individual workload trace. All detailed
results can be found in Appendices K.1, L.1, and M.1. As one can see, all three approaches
improve the objectives for all available workload traces. The scheduling results for the SDSC96
workload trace are nearly unchanged. The objective values for the SDSC95 workload improve
at about 6 %. The scheduling results for all other workload traces improve at least by 15 %.
The improvements for the SDSC00 workload are even higher than 50 %. The results in
Figure 10.7a demonstrate that the individual optimization of the three approaches that are
based on Genetic Fuzzy systems leads to very similar results for each workload trace.

0

10

20

30

40

50

60

CTC KTH LANL SDSC00 SDSC95 SDSC96

Workloads

O
b

je
c
ti

v
e

Im
p

ro
v
e
m

e
n

ts
in

%

Michigan

Pittsburgh

CCA

(a) Objective function values.

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

40

Michigan Pittsburgh CCA

Methods

O
b

je
c
ti

v
e

Im
p

ro
v
e
m

e
n

ts
in

%
AWRT

AWRT1

AWRT2

AWRT3

AWRT4

AWRT5

UTIL

(b) Simple objectives of the CTC workload trace.

Figure 10.7: Relative results for all strategies based on Genetic Fuzzy systems and all workload
traces.

Figure 10.7b displays the 7 simple objectives for all three Genetic Fuzzy system approaches
for the CTC workload trace relative to the objectives obtained by using EASY. Similar to the
Greedy and rigid rule based scheduling approaches, the user groups 1 and 2 have a shorter
average weighted response time and hence these objectives are improved by at least 15 %.
Contrary to the Greedy and the two rigid rule based scheduling approaches, the average
weighted response time for user group 3 improves as well. The average weighted response
times of user groups 4 and 5 are becoming much worse compared with EASY.
Figure 10.8 shows the objective improvements for all workload traces achieved by the Pitts-
burgh approach and the two corresponding rule reduction attempts, presented in Sections
9.2.4.4.2 and 9.2.4.4.3. The detailed results are given in Appendices L.4 and L.5. Except for
the SDSC96 workload, the objective of the scheduling systems with smaller amounts of rules
is nearly as good as the results achieved by the original Pittsburgh approach. The different
numbers of rules are listed in Tables L.7 and L.9.
The rule reduction with a modified fitness function leads to a single rule for all workloads
except of the SDSC00 workload trace. This result is not surprising, as our selected sorting
criteria for the waiting queue already focus on the optimization of the user groups 1 and 2.
Hence, the single rule that is applied specifies the sorting by user groups and a simple FCFS.
Only for the SDSC00 workload trace, 23 rules are extracted.
The results for the attempt by reducing the number of rules using a modified selection operator
are similar. In three cases, only a single rule is applied. However, for the CTC, the LANL,



10.3. SCHEDULING STRATEGIES BASED ON GENETIC FUZZY SYSTEMS 131

-10,00

0,00

10,00

20,00

30,00

40,00

50,00

60,00

CTC KTH LANL SDSC00 SDSC95 SDSC96

Workloads

O
b

je
c
ti

v
e

Im
p

ro
v
e
m

e
n

ts
c
o

m
p

a
re

d
w

it
h

E
A

S
Y

in
%

Pittsburgh

Fitness Modification

Selection Modification

Figure 10.8: Relative objective improvements for the rule reduction attempts for the Pitts-
burgh approach.

and the SDSC00 workload traces some more rules are applied.

-100,00

-80,00

-60,00

-40,00

-20,00

0,00

20,00

40,00

60,00

80,00

Michigan Pittsburgh CCA

Method

O
b

je
c
ti

v
e

Im
p

ro
v
e
m

e
n

ts
in

%

CTC

KTH

LANL

SDSC00

SDSC95

SDSC96

(a) SOPT(CTC) applied to all workloads. Note that
the results for KTH and SDSC00 using the Pitts-
burgh approach are cut. The real results are for
KTH: -151 % and for SDSC: -532 %.

-10,00

0,00

10,00

20,00

30,00

40,00

50,00

60,00

Michigan Pittsburgh CCA

Method

O
b

je
c
ti

v
e

Im
p

ro
v
e
m

e
n

ts
in

%

CTC

KTH

LANL

SDSC00

SDSC95

SDSC96

(b) ALLOPT applied to all workloads.

Figure 10.9: The relative SOPT(CTC) and ALLOPT results for all scheduling strategies based
on Genetic Fuzzy systems applied to all workload traces.

Figure 10.9a shows the achieved objective improvements for all workload traces by applying
the scheduling strategy that was optimized for the CTC workload trace (SOPT(CTC)) using
all three Genetic Fuzzy system approaches. The improvements for the CTC, the LANL,
the SDSC95, and the SDSC96 workload traces are very similar for all three approaches.
However, the optimized scheduling strategy using the Pittsburgh and the CTC workload
trace fails for the KTH and the SDSC00 workload trace. All detailed results can be found in
the Appendices K.2, L.2, and M.2.
Figure 10.9b presents the results that are achieved by using all workload traces during the
optimization procedures together (ALLOPT). The detailed results are given in the Appen-
dices K.3, L.3, and M.3. The quality of the best schedules for all workload traces is very
similar. All three approaches show a robust behavior. The quality of the achieved schedules
for all workloads increases. Using this approach, the scheduling objectives for the SDSC00
workload increase by more than 50 % in all three cases.



132 CHAPTER 10. EVALUATION

10.4 Comparison of all Scheduling Strategies

Figure 10.10 presents the scheduling objective function improvements of all used develop-
ment methods compared with EASY for the CTC workload trace. All three approaches that
are based on Genetic Fuzzy systems lead to scheduling strategies with the highest perfor-
mance regarding the selected objective function. Furthermore, the scheduling quality of these
three approaches is nearly identical. We would recommend the Pittsburgh approach for the
optimization of local scheduling strategies as the computational effort to generate the corre-
sponding scheduling strategy is much smaller in terms of necessary simulations compared with
the Michigan approach and is easier to implement compared with the Cooperative Coevo-
lutionary approach. Additionally, the generation of scheduling strategies that are optimized
for workload traces individually should use one of the two presented approaches to reduce
the number of necessary rules. This further stresses the usage of the Pittsburgh approach for
individual optimizations as the rule reduction attempts are based on this approach.

0

2

4

6

8

10

12

14

16

18

Greedy Iterative Probabilistic Michigan Pittsburgh CCA

Methods

O
b

je
c
ti

v
e

Im
p

ro
v
e
m

e
n

ts
in

%

Figure 10.10: Relative objective improvements for all optimization methods optimized and
applied for the CTC workload trace.

The iterative rule based system generates schedules that lead to a higher objective value than
the Greedy approach and the probabilistic approache. However, the number of necessary
simulations to develop a scheduling strategy based on the iterative approach is much higher
than for the usage of the probabilistic approach. The Greedy scheduling strategy leads to
similar results as achieved by the probabilistic approach. However, the Greedy strategy only
needs 36 parameters to specify the whole scheduling strategy. This is the major advantage
compared with all other solution approaches. In the case of the CTC workload trace, this
simple strategy increases the objective already by about 10 % compared with EASY.
During all of our optimizations, we can observe the invariance of the utilization, see Fig-
ures 10.2, 10.5b, and 10.7b. This is quite interesting as the objective function does not include
the utilization. This effect demonstrates that we are able to develop scheduling strategies that
prioritize different user groups having a nearly constant utilization. This outcome was not ex-
pected. Consequently, the objective function definition can be focused on the preferences of
user groups.
In Figure 10.11, we display the objective increases of all used approaches compared with
EASY by optimizing the different strategies for the CTC workload and applying the resulting
scheduling strategies to all workloads (SOPT(CTC)). The results clearly indicate that only
the Michigan approach and the CCA approache should be used in such scenarios. All other



10.4. COMPARISON OF ALL SCHEDULING STRATEGIES 133

-100,00

-80,00

-60,00

-40,00

-20,00

0,00

20,00

40,00

60,00

80,00

G
re

ed
y

Ite
ra

tiv
e

P
ro

bab
ili
st
ic

M
ic
hi
gan

P
itt
sb

ur
gh

C
C
A

Method

O
b

je
c
ti

v
e

Im
p

ro
v
e
m

e
n

ts
in

%

CTC

KTH

LANL

SDSC00

SDSC95

SDSC96

Figure 10.11: Relative objective improvements for all optimization methods and all workloads
using the strategies optimized for the CTC workload trace (SOPT(CTC)). Note that some
of the results are cut at -80 % as explained above.

approaches fail for at least the KTH and the SDSC00 workload traces. We assume that
the Michigan approach with the 50 rules is better able to adapt to the different scheduling
scenarios. The Pittsburgh approach only consists of 10 rules. As already shown, those 10
rules are enough to generate very good schedules for certain workloads individually. However,
it seems that 10 rules are not enough to generate robust scheduling strategies. The CCA
approach uses 10 rules for the sorting criterion and 10 rules for the scheduling algorithm. The
achieved results indicate that this case is not too specialized on a certain workload but able to
generate good schedules for most of the workloads. The quality of the generated schedules for
the Michigan approach and the CCA approach are very similar. Thus, for the SOPT(CTC)
scenario we recommend the CCA approach as the number of required simulations is in this
case much smaller compared with the Michigan approach.

-60,00

-40,00

-20,00

0,00

20,00

40,00

60,00

G
re

ed
y

Ite
ra

tiv
e

P
ro

bab
ili
st
ic

M
ic
hi
gan

P
itt
sb

ur
gh

C
C
A

Method

O
b

je
c
ti

v
e

Im
p

ro
v
e
m

e
n

ts
in

%

CTC

KTH

LANL

SDSC00

SDSC95

SDSC96

Figure 10.12: Relative objective improvements for all optimization methods and all workloads
using the strategies optimized for all workload traces (ALLOPT). Note that some of the results
are cut at -40 % as explained above.

The objective improvements relative to EASY of all approaches for the ALLOPT scenario are
given in Figure 10.12. Only the approaches that are based on Genetic Fuzzy systems are able
to improve the scheduling outcome for all available workload traces. All other approaches fail
for at least one of the workloads. As already discussed, the scheduling quality of all three



134 CHAPTER 10. EVALUATION

Genetic Fuzzy systems is nearly identical. Thus, we would recommend to use the Pittsburgh
approach or the CCA approach to generate scheduling strategies by using the scheduling
outcomes for all workload traces. The Pittsburgh approach and the CCA approach need
significantly fewer simulations compared with the Michigan approach.
Overall, we prefer the CCA approach as this approach generates good scheduling strategies
in all of our examined scenarios. The individual optimization based on a single workload
trace is possible as well as the generation of a robust scheduling strategy. Such strategies
are developed by applying an optimized strategy based on a single workload trace to other
workloads or by optimizing a scheduling strategy based on the several workload traces.
The Michigan approach leads to similar results but requires more simulations compared with
the CCA approach.
In all of our previous tables and figures, we only presented the relative improvements of the
developed scheduling strategies compared to existing standard strategies. In the following,
we present the scheduling quality of our generated scheduling strategies compared with the
generated Pareto front. By this, we assume that our approximation of the Pareto fronts is close
to the real Pareto front. This is reasonable as our approximation covers a wide area within the
solution space and has a very good diversity. Thus, by presenting the approximated Pareto
front in combination with the achieved scheduling results of the generated strategies we can
compare the achieved scheduling results with the best achievable results.

45

55

65

75

85

95

105

45 55 65 75 85 95

Average Weighted Response Time 1 in 1000 s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
2

in
1
0
0
0

s

Pareto Front

CONS

EASY

FCFS

Greedy

Iterative

Probabilistic

Michigan

Pittsburgh

CCA

(a) All achieved optimization results.

53

54

55

56

57

58

59

60

61

62

63

49 49,5 50 50,5 51 51,5 52 52,5 53

Average Weighted Response Time 1 in 1000 s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
2

in
1
0
0
0

s

Pareto Front

CONS

EASY

FCFS

Greedy

Iterative

Probabilistic

Michigan

Pittsburgh

CCA

(b) Zoom into the area of best performance.

Figure 10.13: The approximated Pareto front of the CTC workload and the best re-
sults achieved by all optimization methods using the optimization for the CTC workload
(SOPT(CTC)).

Figure 10.13a presents the scheduling results of our six approaches using SOPT(CTC) for the
CTC workload trace in combination with the approximated Pareto front and the three stan-
dard scheduling strategies. As one can see, all of our approaches lead to scheduling strategies
that perform better than the existing standard strategies. Furthermore, the three approaches
that are based on Genetic Fuzzy systems are very near to the approximation of the optimal
solution.
Figure 10.13b shows the most interesting area of Figure 10.13a. Here, we can see that the
optimal solution is not reached but all three scheduling strategies based on Genetic Fuzzy
systems are very near to this optimal solution. Furthermore, the Pittsburgh approach and
CCA approach are slightly better than the Michigan approach.



10.4. COMPARISON OF ALL SCHEDULING STRATEGIES 135

45

55

65

75

85

95

105

45 55 65 75 85 95

Average Weighted Response Time 1 in 1000 s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
2

in
1
0
0
0

s

Pareto Front

CONS

EASY

FCFS

Greedy

Iterative

Probabilistic

Michigan

Pittsburgh

CCA

(a) The Pareto front of the CTC workload and the
best results achieved by all optimization methods
using the combined optimization for all workloads
(ALLOPT).

55

56

57

58

59

60

61

62

63

64

65

49 49,5 50 50,5 51

Average Weighted Response Time 1 in 1000 s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
2

in
1
0
0
0

s

Pareto Front

Michigan ALLOPT

Pittsburgh ALLOPT

CCA ALLOPT

Michigan SOPT

Pittsburgh SOPT

CCA SOPT

(b) Comparing the best solutions using ALLOPT
and SOPT and the solutions of the Pareto front for
the CTC workload trace.

Figure 10.14: Results for the ALLOPT and SOPT solutions with the CTC workload trace.

The outcome of the generation of scheduling strategies by optimizing the outcome for all
workload traces together (ALLOPT) is shown in Figure 10.14a for the CTC workload trace.
Of course, the results are not as good as in the SOPT(CTC) case as we do not optimize the
strategies for the CTC workload trace only. This is shown in Figure 10.14b. Here, the solution
generated by the Michigan approach with SOPT(CTC) is nearly identical with the ALLOPT
solution using the CCA approach. Most of the resulting strategies based on ALLOPT achieve
a better scheduling quality than the existing standard strategies. Furthermore, the strategies
based on Genetic Fuzzy systems are very close to the approximation of the Pareto front. In
opposite to the SOPT(CTC) scenario, neither the iterative approach nor the probabilistic
approach are able to improve the scheduling results compared with the standard strategies,
see Figure 10.14a. In this case, the Greedy strategy is more robust than those two rigid
approaches.



Part III

Grid Scheduling

136



Chapter 11

Grid Scheduling

Grid computing extends the concept of massively parallel processing systems. This is mean-
ingful, as computing power remains a limited resource. On the one hand, this is caused by new
emerging complex applications which were enabled by the new technology. On the other hand,
many existing applications grow in their demand for computing power. Grids can include many
resources of different nature as, for instance, CPU, network, data, or software [101, 62]. Hence,
Grids are more and more interesting to offer the user transparent access to those resources.
This transparency is the reason to use the term “Grid”. This term alludes to the Electrical
Power Grid which provides all users with electrical power just on demand without requiring
any deeper insight about how and where the power has actually been generated. Similarly, a
Computational Grid is supposed to provide computational power on demand to all users with-
out prior knowledge about the locations of the allocated resources. In general, Grids usually
denote the sharing of geographically distributed resources that belong to different providers
and reside in different administrative domains.
More specific, Grid computing is a method to execute computational jobs requiring a signif-
icant amount of computing resources and/or large sets of data. Contrary to single parallel
processing environments and large heterogeneous distributed systems, a Computational Grid
has many independent resource providers with different access policies. In addition to the
size of such a Grid, the diversity of those policies leads to a very complex allocation task
that should not be manually handled by the users and providers. This task does not only
include the search for suitable machines but also the coordination of the actual job execution
on the selected set of machines. Therefore, an efficient and flexible Grid scheduling system is
required to manage the job requests of the users. Further, the independent resource providers
typically want to maintain control of their Grid resources by use of local management sys-
tems. Those local management systems enable local providers to satisfy local users and user
groups. To this end, the scheduling systems described in the previous chapters can be used
and are of special interest. The different provider objectives increase the complexity of the
Grid allocation task as those local management systems usually do not provide all system
information due to their architecture or due to policy restrictions. Similarly, it is difficult to
consider the requirements of individual jobs with complex workflows or complex user objec-
tives. These scheduling objectives are a consequence of the differences in cost and quality of
service among the machines. The workload of a Grid system is generated by independent users
who submit their jobs over time. It is the task of the scheduling system to decide when and
where a job is executed and to allocate resources to this job. As mentioned above, this process

137



138 CHAPTER 11. GRID SCHEDULING

is subject to the job requirements, the users’ objectives and the resource providers’ policies to
grant access to the resources. The various steps of performing the scheduling task have been
outlined by Schopf [133]. These steps include the finding of suitable resources for such a re-
quest, the decision which of the actually available resources to choose, and the determination
of the start of a particular application. As, at least temporarily, more requests are submitted
than machines are available, this leads to machine conflicts which must be settled by the
scheduling algorithm. Grid scheduling significantly differs from conventional job scheduling
on parallel computer systems which has been addressed in the previous chapters. Although
several core Grid services are already available, those higher-level services for coordinating
the resource access are still missing. Even existing complete Grid systems, like, for instance,
Condor, Legion, or Nimrod/G, deliver a full set of services only for specific configurations.
In this chapter, we analyze the requirements for scheduling methods in a Grid environment.
This leads to implications for the architecture of a Grid scheduling system. Particularly,
we discuss several scheduling algorithms with respect to their suitability for Grids. First, we
describe how conventional scheduling strategies for parallel systems can be extended to include
the Grid paradigm. As machine and job management problems in a Grid can be modelled as a
utility market, it seems appropriate to also consider economic and market oriented methods.
Therefore, we discuss those methods and present a market oriented scheduling strategy and
its exemplary implementation. The different strategies are evaluated by use of simulations
with trace based workloads for two scenarios. As a result, it is concluded that conventional
and economic strategies are both suitable in general for Grid scheduling. Depending on the
actual environment constraints in a real Grid system, both strategies have their advantages
and their drawbacks, which are described in detail. Due to its higher flexibility, the economic
approach seems to be the solution of choice for Grid scheduling in the long term.
The presented chapter represents the summary of the various Grid scheduling related publi-
cations by Ernemann et al. [42, 41, 43, 40, 48, 45, 44] or Franke et al. [83, 65] and serves as
a good overview for related problem areas.

11.1 Introduction to Computational Grids

While some Computational Grids are based on machines within a single administrative do-
main, like a large company, most Computational Grids consist of resources with different
providers. In the latter case, most providers are not willing to exclusively assign their re-
sources to the Grid. For instance, a computer may temporarily be removed from a Grid to
work solely on a local problem if there is a need for it. In order to react immediately in those
situations, providers typically insist on local control over their resources, which is achieved
by use of a local management system.
On the other hand, it would be a cumbersome and tedious task for a potential Grid user
to manually select all resources needed to run his Grid application. To prevent those tasks
from significantly slowing down the proliferation of Computational Grids, a specific Grid
management system is needed. Ideally, such a Grid management system includes a separate
scheduling layer that collects the Grid resources specified in a job request, considers all re-
quirements, and interacts with the local scheduling systems of the individual Grid resources.
Hence, the scheduling paradigm of a Grid management system will significantly deviate from
that of local or centralized schedulers for large computer systems which typically have im-
mediate access to all system information. Although it seems obvious that a Grid scheduler



11.1. INTRODUCTION TO COMPUTATIONAL GRIDS 139

will consist of more than a single scheduling layer, the details of an appropriate scheduling
architecture have not yet been established [140]. Nevertheless, it is clear that some layers are
closer to the user (higher-level scheduling instance) while others are directly affiliated
with the resource (lower-level scheduling instance). Of course, those different layers must
exchange information among each other.
In general, Grids may not be restricted to two levels of scheduling layers but may be built
hierarchically. For instance, a large Computational Grid may consist of several Sub-Grids.
Each of those Sub-Grids has a separate Grid management system. The Grid scheduler of
one Sub-Grid may decide to forward the request of a local user to another Grid scheduler
from a second Sub-Grid. Then, this second Grid scheduler interacts with the local scheduling
systems of the resources in its Sub-Grid. Clearly, three scheduling instances are involved in
this situation. The Grid scheduler of the second Sub-Grid is a lower-level scheduling instance
with respect to the Grid scheduler of the first Sub-Grid, while it is a higher-level instance
in the communication process with the local scheduling systems of the second Sub-Grid. Of
course, the scheduling instance in the lowest layer is always a local scheduling system.
Presently, a variety of different local scheduling systems, like PBS, LoadLeveler, LSF, or
Condor [100], are installed in large computer systems. A Grid scheduling layer must exploit
the capabilities of those local scheduling systems to make efficient use of the corresponding
Grid resources. However, those capabilities are not the same for all local scheduling systems
due to system heterogeneity.
All this leads to several general aspects that must be considered in designing a generic Grid
scheduling environment, see also Czajkowski et al. [26]:

Site Autonomy All resources of a Grid are typically not owned and maintained by the same
administrative instance.

Independent Schedulers A Grid scheduler has no exclusive control over all resources in a
Grid. Therefore, the Grid scheduler must cooperate with the existing independent local
schedulers.

Heterogeneous Substrate The resources usually have their own local management soft-
ware with different features depending on the local policies and functionalities of the
management software. Hence, the Grid scheduler has to cope with the limitations of the
local management.

Online Problem The Grid scheduling takes place in an online environment where jobs are
submitted at any time. Additionally, information on the current state of resources may
be difficult to obtain and to keep up to date.

Scalability and Reliability As the Grid is intended to span over a very large number of
systems, a Grid management system requires a high degree of scalability. The general
Grid management must remain operable even if some components are impacted by a
resource failure.

Variable Scheduling Objectives The scheduling objectives may vary for each available
resource according to the provider’s policy. In addition to the objectives of the provider
the needs of the users must also be taken into account.

Co-allocation Some applications need several resources from different providers at the same
time. The Grid scheduling system must be capable of coordinating these resources.



140 CHAPTER 11. GRID SCHEDULING

Resource Reservation Several complex applications require the reservation of resources in
advance. Further, it is advantageous for the scheduler to consider system downtime or
restricted access that is known beforehand. Finally, advance reservations are required
for co-allocated resources or multi-site applications.

For the design and evaluation of Grid scheduling strategies, we distinguish two Grid computing
scenarios.

1. HPC Grids: Cooperation between a limited or moderate number of computing sites
with high performance computer systems and a dedicated user community.

2. Global Grids: Large-scale Grids with a diverse number of resources and independent
users.

The first scenario is the typical use case of a Grid. The relatively small user community
is part of a scientific community. Furthermore, those grids represent virtual organizations.
This scenario is also applicable for large commercial companies in which existing computing
resources, for instance, at different locations, are used efficiently.
The second scenario represents the idea of a global large-scale Grid infrastructure in which
individual users have access to a large number of Grid resources. These resources belong to
independent and typically unknown providers. This scenario is the generally discussed and
anticipated long-term vision for Grid technology.
In the following, we analyze these two Grid scenarios. Both have different requirements which
must be taken into account when designing a Grid scheduling system. For instance, the
scalability issue is less important in the first scenario. Here, it may not be necessary to pay
much attention to complex scheduling objectives including cost management and commercial
Grid business models. Therefore, we may use a different approach on Grid scheduling in this
scenario by extending existing scheduling methods for high performance computer systems.
For evaluation purposes, however, we use the same generic Grid model for both scenarios
which allows us to compare the presented methods later. But note that especially the second
scenario covers a larger diversity of Grids.
Our Computational Grids consist of several independent computing resources which are linked
by interconnection networks. The term independent emphasizes the fact that the participating
resources are not controlled by a single entity and may be geographically distributed. While
this definition for a Grid does not specify details of the individual resources in the network,
in practice, these resources are often high performance computing components, like massive
parallel processors, networks with high speed and high bandwidth, or large databases. Only
the component at the user access point may not necessarily belong to this category. However,
the user of such a Grid system may not be aware of the internal system structure but has the
illusion of a single virtual machine. To support this concept, the Grid management system
may use several components of the system concurrently to solve a large problem. This is called
multi-site execution.
In our studies, we assume that each participating site has a single massively parallel machine
that consists of several nodes. A parallel job can be allocated to any subset of nodes of a
machine. This model comes reasonably close to a Grid environment consisting of real systems
like an IBM RS/6000 scalable parallel computer, a Sun Enterprise 12000, or an HPC cluster.
For simplicity, all machines and all nodes in this study are identical. The machines at the
different sites only differ in the number of nodes. The existence of different resource types



11.2. PROBLEM CLASSIFICATION 141

would additionally limit the number of suitable machines for a job. In a real implementation,
a preselection step is part of the Grid scheduling process and is normally executed before
the actual scheduling takes place. After this preselection phase, the scheduler ideally chooses
from several resources that are all suitable for the job request. In this study, we neglect this
preselection step and focus on the remaining scheduling task. Therefore, in the following, it
is assumed that all job parts could be executed on any node.
Like in the single massively parallel computer scenario of Chapter 4, the jobs are not pre-
empted nor time-sharing is used. Thus, once started, a job runs until completion. Furthermore,
we do not consider the case that a job exceeds its allocated time. After its submission, a job
requests a fixed number of resources that are necessary for starting the job. This number is not
changed during the execution of the job, that is, jobs are neither moldable nor malleable [58].
As Grid workloads are not yet available, we model a Grid scenario with the help of workloads
for single parallel machines, see Section 4.5. Here, jobs are submitted by independent users
at the local sites. This produces an incoming stream of jobs over time. Thus, we deal with an
online scheduling problem without any knowledge on future job submissions. The scheduling
system allocates resources for the jobs and determines their starting time. Then, the jobs are
executed without any further user interaction.
In a real implementation, the job data must be transferred to the remote site before the
execution. This transport of data requires additional time. This effect can often be hidden by
Grid data management services which pre-fetch data before the execution and return output
data afterwards. In this case the resulting overhead is not necessarily part of the scheduling
process. For now, we neglect this data transport for the scheduling and discuss this decision
in the evaluation following later.

11.2 Problem Classification

The general scheduling problem of Grid Computing is, regarding the general framework and
notation introduced in Section 2.1, difficult to describe. The notation of scheduling systems is
based on the assumption that a complex system and all available information can be explored
by a single administrator. However, in the context of Grid Computing this is not valid, as
none of the providers is able to access all information of all available machines. Thus, we need
to extend the notation from Section 2.1. To this end, we introduce a new element within the
β-field: MP. This reflects the fact that Multiple Providers (MP) are involved. Consequently,
the scheduling objective cannot be optimized by a single provider but only by the cooperative
behavior of all participating computing sites. Furthermore, the meaning of the β-field entry
Mj must be specified. In the original work by Graham, Mj specifies that job j can only be
executed on a subset of all m machines. In the Grid scenario these subsets Mj are normally
given by the administrative domains as jobs can only be executed within one domain with
the exception of a multi-site scheduling, see Section 11.3.
Consequently, the problem classification of Section 4.3 where we described the schedul-
ing problem of a single massively parallel processing system by Pm|r̄j , p̄j ,mj |Cmax has to
be extended to Pm|r̄j , p̄j ,mj ,Mj ,MP |Cmax for Grid Computing. We still assume that the
makespan (Cmax) is minimized. However, if the participating k providers have different objec-
tive functions (f1, f2, . . . , fk), the scenario can be described by Pm|r̄j , p̄j ,mj ,Mj ,MP |Fs(f1, f2, . . . , fk)
regarding the notation for multi-objective scheduling problems, see Section 2.5.1.



142 CHAPTER 11. GRID SCHEDULING

11.3 Evaluation of Load-Sharing in Grids

Within this section, we address Grid scheduling strategies for the above mentioned Scenario 1.
As already pointed out the different scheduling strategies are derived from conventional
scheduling on parallel computers. In this first study, we consider different levels of cooperation
methods between the computing sites and analyze the impact on the scheduling quality in
terms of minimization of response times. The scheduling algorithms are mainly based on the
well known First Come First Serve (FCFS) strategy and its derivatives, see Section 4.4.
We start by considering the following three different cases.

1. Local Job Processing

� � � � � �� � � � � �� � � � � �� � � � � �� � � � �� � � � �� � � � �
� � � � �� � � � �� � � � � � � � �

� � � �� � �
� � �

� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � � � � �

� � �
	 	 	
	 	 	


 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 


� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �

�����������
�����������
�����������

�����������
�����������
�����������

Grid-Scheduler

Scheduler 1 Scheduler 2 Scheduler 3

Site 2 Site 3Site 1

Machine 1 Machine 2 Machine 3

tim
e

tim
e

tim
e

nodesnodesnodes
Schedule Schedule Schedule

Job-Queue 1 Job-Queue 2 Job-Queue 3

Figure 11.1: Sites Executing All Jobs Locally.

Here, the computing resources at a site are dedicated only to their local users (see
Figure 11.1). Hence, each site has its own workload that is not shared with other sites.
For our simulations, we use the EASY backfilling algorithm of Section 4.4.2.1 that has
been implemented in several installations of high performance computers [144].

2. Job Sharing

In this case, all jobs are forwarded to a central Grid scheduler as seen in Figure 11.2.
Note that this scheduler may be implemented in a distributed fashion. Such an im-
plementation requires an additional management overhead for exchanging information
about the current state of the queues and schedules in the system. Nevertheless, it knows
about all submitted jobs. This is only possible in the HPC Grid Scenario 1 where the
number of different sites is limited. However, in practice a local system may decide to
forward only a subset of its local job to a Grid scheduler. The scheduling algorithms
consist of two steps representing two layers of a Grid scheduler. In the first step, the ma-
chine is selected, while in the second step, the actual scheduling on the target machine
is executed.

Step 1 - Machine Selection: There are several methods possible for selecting the
target machine. For instance, other simulations [74] showed good results for a



11.3. EVALUATION OF LOAD-SHARING IN GRIDS 143

� � � � � �� � � � � �� � � � � �� � � � � �� � � � �� � � � �� � � � �
� � � � �� � � � �� � � � � � � � �

� � � �� � �
� � �

� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � � � � �

� � �
	 	 	
	 	 	


 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 


� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �

�����������
�����������
�����������

�����������
�����������
�����������

Grid-Scheduler

Scheduler 1 Scheduler 2 Scheduler 3

Site 2 Site 3Site 1

Machine 1 Machine 2 Machine 3

tim
e

tim
e

tim
e

nodesnodesnodes
Schedule Schedule Schedule

Job-Queue 1 Job-Queue 2 Job-Queue 3

Figure 11.2: Sites Sharing Jobs and Resources.

selection strategy called BestFit. Here, the machine is selected on which the job
would leave the least number of idle resources if it is started there as soon as
possible.

Step 2 - Scheduling Algorithm: Again, EASY backfilling is used.

3. Multi-Site Computing

This case allows the concurrent execution of a job on more than one machine. It comes
closest to the concept of a single large virtual machine while the usage of multi-site
applications has been theoretically discussed for quite some time [15]. There are only
few real multi-site applications in practice. Therefore, there are no data to determine
the effect of multi-site execution on the execution time of a job.

In our model, the local schedulers forward all jobs to a Grid scheduler. This time, the
Grid scheduler does not simply select a single site for job execution but may also split
jobs to be executed across site boundaries (see Figure 11.3). Note that the job parts
still run in parallel on the different sites.

Again, there are several strategies possible for multi-site scheduling. Here, we use a
scheduler that first tries to find a site with sufficient currently idle resources for im-
mediately starting the job. If such a machine is not available, the scheduler tries to
allocate resources from different sites for the job. To this end, the sites are sorted in the
descending order of idle resources which are then allocated in this order to the job. This
way, the number of execution sites is minimized. If there are not enough free resources
available for a job, it is queued and backfilling is later applied.

Spreading job parts over different sites usually produces an additional overhead. This
overhead is a result of the process communication during run time which must be par-
tially executed over the wide area network (WAN). However, as WAN networks become
faster, this overhead may decrease over time. Further, it depends on the particular appli-
cation. For those jobs with limited communication demand there is only a small impact.
The overhead in a real Grid scenario highly depends on the job communication pattern
and the network configuration between the sites. Due to the lack of available data, we



144 CHAPTER 11. GRID SCHEDULING

� � � � � �� � � � � �� � � � � �� � � � � �� � � �� � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � �� � � � �� � � � �
	 	 	 	 		 	 	 	 		 	 	 	 	 
 
 
 



 
 
 
� � �
� � �

� � � � � � � �
� � � � � � � �
� � � � � � � �

       
       
        � � �

� � �
� � �
� � �

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �

���������������������
���������������������
���������������������

���������������������
���������������������
���������������������

Grid-Scheduler

Scheduler 1 Scheduler 2 Scheduler 3

Site 2 Site 3Site 1

Machine 1 Machine 2 Machine 3

tim
e

tim
e

tim
e

nodesnodesnodes
Schedule Schedule Schedule

Job-Queue 1 Job-Queue 2 Job-Queue 3

Figure 11.3: Support for Multi-Site Execution of Jobs.

assume a proportional increase for the execution time of all multi-site jobs. To this end,
we model the influence of the overhead by extending the required execution time pi to
p∗i for a job i that runs on multiple sites by a constant factor p:
p∗i = (1 + p) · pi with p = 0 .. 300 % in steps of 5 %.
Note that without the introduction of any penalty for multi-site execution, the Grid
would behave like a single large computer. Hence, multi-site scheduling will ideally out-
perform all other scheduling strategies.

Further, we also examined an improved multi-site strategy. In this algorithm, the earliest
potential completion time of the job running on a single machine is compared to the
completion time of a multi-site job execution with the additional overhead. The better
alternative is chosen, see Figure 11.4. Note that this is only an estimation as the real
starting time of the job may vary depending on the completion time of jobs ahead in
the queue.

11.3.1 Machine Configurations

In our evaluation we considered several Grid configurations to determine the robustness of
our results. In order to allow comparisons between the results of different configurations, we
use the same workloads and require that the sum of all nodes in each configuration comprises
exactly 512. Those nodes are partitioned into various machine configurations as shown in
Table 11.1.
The configurations m64-8, m128-4 and m256-2 represent several sites with 8, 4 and 2 iden-
tical machines respectively. They are balanced as there is an equal number of nodes at each
machine. The configurations m384-6 and m256-5 are examples of a large computing center
with several smaller client sites.
Finally, the reference configuration m512-1 consists of a single site with one large machine. In
this case no Grid computing is used. This reference configuration yields the best scheduling
output that is possible without partitioning the compute resources into several machines and
without any overhead due to Grid scheduling.



11.3. EVALUATION OF LOAD-SHARING IN GRIDS 145

sum of all

free resources

<

requested

resources?

free resources on a

single machine >=

requested resources?

calculate potential earliest end

time of Single-Site execution

with waiting and Multi-Site

execution without waiting

start job in Multi-Site

mode
initiate backfilling

place job in waiting

queue

Start job on a

single machine

(strategy Best Fit)

potential

earliest end time on

a single machine > end time

in Multi-Site

mode

No

Yes

No

Yes

No

Yes

Figure 11.4: Algorithm for Multi-Site Scheduling.

11.3.2 Workload Model

The evaluation of Grid scheduling strategies is not only based on the chosen machine config-
uration but also on the chosen workloads. In the following, we present the workload models
which we used in the simulations of our evaluation.
Due to the lack of appropriate workload models for Computation Grids, we derive suitable
input data from real job traces that are described in Section 4.5.2. In order to use these traces
for our study, it is necessary to modify them to simulate submissions at independent sites with
local users. To this end, the jobs from the real traces are assigned in a round-robin fashion
to the different sites. However, as already stated in Chapter 5 many workloads favor jobs
requiring 2x nodes. Configurations with smaller machines would be put into disadvantage
if the number of nodes on these machines is not a power of 2. To this end, we selected
configurations with a total number of 512 nodes.
As discussed above, the quality of a scheduler highly depends on the used workload. To
minimize the risk that singular and abnormal workload characteristics affect the validity of



146 CHAPTER 11. GRID SCHEDULING

identifier configuration max. size sum
m64-18 4 · 64 + 6 · 32 + 8 · 8 64 512
m64-8 8 · 64 64 512
m128-4 4 · 128 128 512
m256-2 2 · 256 256 512
m256-5 1 · 256 + 4 · 64 256 512
m384-6 1 · 384 + 1 · 64 + 4 · 16 384 512
m512-1 1 · 512 512 512

Table 11.1: Resource Configurations.

our results, the evaluation simulations have been done for 4 different workload sets which are
all taken or derived from the same user group of the corresponding real installation. Each
workload set consists of 10000 jobs. Furthermore, each workload covers a period of more than
three months in real time.
Specifically, we use:

• three extracts of original CTC traces and

• one synthetic workload generated by a probabilistic workload model on the basis of the
CTC traces. This workload model is described by Krallmann [94] and used in some
other Grid scheduling publications, see, for example, Hamscher et al. [74]. It has been
generated to prevent that potential singular effects in real traces, like a down-time of the
real system, affect the accuracy of the results. However, as discussed in Chapter 5, such
down times are often necessary to represent the real scheduling behavior of a system.
Hence, the results of the scheduling using this generated trace have to be interpreted
with care.

In our simulations, special care has to be taken for handling the ”wide” jobs which are
contained in the original workload traces. These are jobs within the workload which require
more processing nodes than available on a machine. For instance, the widest job in the CTC
traces requests 336 processing nodes. It cannot be executed in all of our Grid configurations.
To permit a valid comparison of the simulation results, no job must be neglected. Therefore,
we assume that the corresponding workloads of wide jobs are still generated at single sites.
The wide jobs are split up into several parts of the local machine size to allow their execution
(Modification 1 ). We also examined two other workload modifications. In one case, the job
size is limited by the size of the largest machine in the configuration (Modification 2 ). Here,
users can submit jobs that are wider than the local machine size. In another case, all jobs are
split up into several parts with maximum 64 nodes to allow their execution on all examined
configurations (Modification 3 ). Every configuration has a machine that consists of at least
64 nodes. To allow the comparison of different configurations for job sharing the following
modifications have been applied to each aforementioned workload.
The workloads with modification 1 and 3 were executed in all 3 scheduling cases. The work-
loads with modification 2 were simulated for the job-sharing and multi-site case. Note that
all of these modifications do not alter the overall amount of workload. With our modifications
large jobs are split up, but they are still generated at the same site. Depending on the case,
a user may submit jobs larger than locally available. The simulations allow the examination
of the impact caused by wider jobs on the schedule.



11.3. EVALUATION OF LOAD-SHARING IN GRIDS 147

identifier description
W1 An extract of the original CTC traces from job 10000 to 20000.
W2 An extract of the original CTC traces from job 30000 to 40000.
W3 An extract of the original CTC traces from job 60000 to 70000.
W4 The synthetically generated workload derived from the CTC workload traces.

Table 11.2: The Used Workloads.

The input workloads are summarized in Table 11.2 and an identifier is introduced for each
workload. The selection of workloads and the application to different machine configurations
prevents the over- or underutilization of machines. If there are not enough jobs to be executed
on a machine, the results may lead to wrong interpretations due to unrealistic modeling. The
backlog of a scheduling system is a good indicator to check the utilization. The backlog is
the workload that is queued at any time instant as there are not enough free resources to
start the jobs. A small or even no backlog indicates that the system is not fully utilized. In
our evaluations, we could show that all traces provide enough workload to keep a sufficient
backlog on all systems (see also results from Hamscher et al. [74] and Ernemann et al. [42]).
The average wait time of all jobs is between 45 minutes and more than two hours, which
indicates the existence of an appropriate backlog. The examination of the actual schedules
also shows that there was no job starvation. That is, the backlog did not grow significantly
during the simulation, which would have been the case if the machines were not capable to
master the workload.

11.3.3 Simulation Results

For the evaluation of the different structures and algorithms, discrete event simulations have
been performed, see also [42, 41, 40]. We use the average weighted response time (AWRT),
see Equation 4.2 on page 46, as the measure in this study.

11.3.3.1 Job-Sharing

The usage of job-sharing improved the average weighted response time in all examined ma-
chine configurations and in all workloads in comparison to the local job execution. In the
configuration m128-4, for example, the improvement is over 50 % (see Figure 11.5). The
achieved results are similar for all other simulations. As mentioned before large jobs that
are wider than the local machine have been split up into smaller jobs which are sequentially
executed on the local system. This leads to an increase of the AWRT in comparison to the
original local job execution as the workload of these wide jobs is still generated and submitted
at the same time as the original wide job, but the sequential execution leads to a delay of job
parts. Job-sharing on the other hand allows the transfer of jobs to remote machines.

11.3.3.2 Multi-Site Computing

Next, we examine the influence of using multi-site execution. The results show that further
improvements on the AWRT can be achieved in comparison to job-sharing. As a reference,
the result for a single machine with 512 nodes is used (Figure 11.5). As expected, the average
weighted response time without overhead for multi-site is near to the m512-1 result, see



148 CHAPTER 11. GRID SCHEDULING

0

10

20

30

40

50

60

70

Reference

m512-1

Local

Execution

Job Sharing Multi-Site

p=0%

Multi-Site

p=5%

Multi-Site

p=10%

Multi-Site

p=15%

Multi-Site

p=20%

Multi-Site

p=25%

Multi-Site

p=30%

Multi-Site

p=35%

Multi-Site

p=40%

A
v

e
ra

g
e

W
e

ig
h

te
d

R
e

s
p

o
n

s
e

T
im

e
(i

n
1

0
0

0
s

e
c

o
n

d
s

)

Figure 11.5: Average Weighted Response Time for the m128-4 Configuration and Workload
W4 with Modification 2.

Figure 11.5. The difference is caused as the multi-site strategy is quite simple and does not
fully exploit the potential of all available machines.
Moreover, multi-site execution is also beneficial compared to job-sharing even for an over-
head of about 25 % on the execution time (Figure 11.5). Similar results are achieved for
other configurations, see Ernemann et. al. [41, 42]. The above mentioned results, as given in
Figure 11.5, show the least effective improvements in comparison to other examined work-
loads. The average weighted response time in other configurations delivers even better results.
Therefore, the tolerable overhead on multi-site executed jobs can even be larger.
Examining the sensitivity on different machine configurations, the simulation results show
that configurations with larger machines provide significantly better scheduling results than
machine configurations that are higher fragmented, see Figure 11.6 for all machine configu-
rations and workload W4.
The increase of the AWRT results from two effects. First, the overall workload increases as all
multi-site jobs have a longer execution time due to the overhead (p). Second, we can make the
observation that the number of multi-site jobs increases with additional overhead. Table 11.3
shows the number of multi-site jobs for machine configuration m128-4 for different workloads
and different multi-site parameters p. The effect can be seen for all workloads. This process
is not monotone, but the difference between the number of multi-site jobs for p=0 % and
p=60 % is always at least 30 %. This behavior results from the scheduling policy to schedule
all jobs as soon as possible after submission. With increasing p, the execution in single-site
mode becomes more beneficial compared with the multi-site execution. However, each job
must be started as soon as possible. Thus, if multi-site executions are initiated, the increased
execution time of all those multi-site jobs results in a reduction of the number of idle machines
within the schedule. Therefore, the probability of free resources within one machine decreases
as well. Hence, more jobs are started in multi-site mode.
The previous results show that jobs running in multi-site mode are in the majority jobs with
a higher resource demand [42, 41]. This can be concluded because 5 % to 10 % of all jobs



11.3. EVALUATION OF LOAD-SHARING IN GRIDS 149

0

10

20

30

40

50

60

70

80

90

m512-1 m64-8 m64-18 m128-4 m256-2 m256-5 m384-6

Machine Configuration

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
(i

n
1
0
0
0

s
e
c
o

n
d

s
)

Job Sharing

p=0%

p=5%

p=10%

p=20%

p=30%

p=40%

p=50%

p=60%

Figure 11.6: The Average Weighted Response Time in Seconds for Workload W4 and all
Machine Configurations and Multi-Site Scheduling.

are multi-site jobs while they are responsible for about 20 % to 40 % of the whole amount
of workload depending on the used job trace. This effect even increases for a higher multi-
site overhead (p) and is responsible for the above mentioned results. However, for machine
configuration m384-6, job sharing always yields better results than multi-site scheduling. This
effect results from the algorithm for multi-site scheduling. Here, a job that is considered for
multi-site execution can be started earlier than previously submitted but not yet started jobs.
For the completion of those waiting jobs the algorithm determines that it is beneficial to wait
until enough resources are available on a single machine. Thus, the execution time does not
increase for those jobs. In that case, this strategy does not consider backfilling for the waiting
jobs.
The job sharing and multi-site execution of jobs in configurations with bigger machines is
advantageous to configurations with smaller machines. In our example, the m64-8 configura-
tions produce up to 25 % better AWRT results in comparison to m64-18. The comparison
between the configurations m64-8, m128-4 and m256-2 shows that the use of bigger machines
produces favorably better scheduling results.
Figure 11.7 shows the average weighted response time for the multi-site scheduling that calcu-
lates the estimated completion time of all jobs for the single-site and the multi-site execution
before starting a job in multi-site mode. The improvements can be seen in comparison to
Figure 11.6. In general, the average weighted response time is lowered for each configuration
by the application of this improved strategy. That is, the Grid in these settings can handle
multi-site jobs with a higher penalty while still improving against the job sharing scheduling
case. However, as it can be seen in the figure, for configurations with large parallel machines



150 CHAPTER 11. GRID SCHEDULING

file W1 W2 W3 W4
[jobs]=̂[10−2%] [jobs]=̂[10−2%] [jobs]=̂[10−2%] [jobs]=̂[10−2%]

p=0 % 539 431 840 774
p=5 % 543 436 850 769
p=10 % 582 448 928 827
p=15 % 572 490 917 906
p=20 % 583 546 946 946
p=25 % 601 567 951 1042
p=30 % 622 521 979 1026
p=35 % 637 523 1036 1063
p=40 % 647 534 1106 1012
p=45 % 673 597 1008 1181
p=50 % 755 579 1029 1188
p=55 % 748 578 1086 1233
p=60 % 746 638 1114 1177

Table 11.3: Number of Multi-Site Jobs for Different Workloads and Different Parameters
Using Machine Configuration m128-4.

job sharing often still yields better results than multi-site computing.
Note that in resource configuration m384-6 multi-site execution is not necessary, as the largest
job within the workload requests only 336 nodes and can therefore be executed on the machine
with 384 nodes. Even an overhead of 300 % in resource configuration m384-6 yields 4 %
execution of all jobs in multi-site mode. This is only a 42 % reduction compared to an
overhead of 30 % in the same configuration, whereas the resource consumption of the multi-
site jobs decreases to 30 % in the same case. Overall, increasing the overhead ten times from
30 % to 300 % only results in an increase of the average weighted response time of about 7 %
in this configuration.
Note that we do not conclude that multi-site is suitable for all applications. In terms of latency
WAN networks are in the order of 2-3 magnitudes slower than common fast interconnection
networks between nodes inside a parallel computer, e.g. an IBM SP Switch. Thus, the actual
overhead caused by multi-site may be much higher. The question if multi-site execution is
suitable, depends on many factors as e.g. the actual communication pattern, the requirement
in data I/O of input/output data. Nevertheless, the results indicate that multi-site execution
may be beneficial in terms of response time reduction for applications with a limited demand
in communication as presented in our results.
Our evaluations shows good results for the average weighted response time. Other examina-
tions not presented here show also that high utilization of the machines were achieved.

11.4 Market-Oriented Scheduling

In the following we examine the Global Grid scenario in more detail. In such a Grid environ-
ment, there are much more different users and providers which typically do not know each
other. Here, the complete scheduling considerations presented in Section 11.1 are taken into
account. While the optimization goal for a single parallel machine or in a small Grid is usu-



11.4. MARKET-ORIENTED SCHEDULING 151

0

20

40

60

80

100

120

140

160

180

200

m512-1 m64-8 m64-18 m128-4 m256-2 m256-5 m384-6

Machine Configurations

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
(i

n
1
0
0
0

s
e
c
o

n
d

s
)

Job Sharing

p=0%

p=5%

p=10%

p=20%

p=30%

p=40%

p=50%

p=60%

p=120%

p=180%

Figure 11.7: Comparison of Adaptive Schedules for Workload W4.

ally the minimization of the completion time of a computational job, in a large-scale Grid we
might encounter more complex scheduling objectives. Here, various criteria have to be consid-
ered like, for instance, cost, quality of service or additional time constraints, as for example
given start and completion time limits. The examined algorithms in the previous sections are
mostly derivations of list schedulers that are usually predestined for a single overall objective.

For the Global Grid scenario, other scheduling approaches are necessary that may deal better
with different user objectives as well as provider and resource policies. The independent users
or resource providers in future Grids can be compared to a market in which independent
parties trade for goods; in our case a good is the node allocation for a certain time. This is a
typical application scenario in which economic models are used. In the following, we want to
address the idea of applying economic models to the scheduling task. To this end, a market-
economic method for Grid scheduling is presented and analyzed [43]. In our study we use
the same evaluation process from the previous sections. However, the quality of an economic
scheduling process is more difficult to measure as the former single objective is now dependent
on the specific and variable objective formulation and the corresponding cost-metric. While
there is a high degree of freedom in these processes, heuristics are often applied to limit the
necessary time to exert the market methods. As neither information about Grid workloads
nor user objectives, and cost models are available, we compare the market-oriented scheduling
strategies with the conventional scheduling strategies as presented in Section 11.3. Therefore,
we consider again only the average weighted response time minimization in our simulations.
However, in this case, we do not exploit all additional features of the economic model like the
support for variable objective formulation.



152 CHAPTER 11. GRID SCHEDULING

11.4.1 Market Methods

Market methods for scheduling computational power have been subject of research for quite
some time. Such economic methods have also been applied in various contexts including Grids,
see the references given by Buyya [18, 19] or by Cheliothis and Kenyon [91]. The supply and
demand mechanisms provide the possibility to optimize different objectives of the market
participants. It is expected that such methods provide high robustness and flexibility in case
of failures and a high adaptability during changes.
It has to be emphasized that a market method is an equilibrium protocol and not a complete
algorithm. Various methods, like the execution of auctions [162], have been developed to
obtain this equilibrium. Common examples for auctions are: the English Auction, the Dutch
Auction, the Sealed Bid Auction and the Double Auction. More details about the general
equilibrium and its existence are given by Ygge [166].
In the following, we present our economic scheduling method for Grids. In contrast to the
above mentioned approaches, we consider the flexible definition of scheduling objectives for
each individual job request and each resource offer. Earlier applications of similar methods
can be found in the WALRAS method and in the Enterprise method. As our strategy is
derived from these methods, we briefly introduce their main concepts.
The WALRAS method is a classic approach that translates a complex, distributed problem
into an equilibrium problem. It is based on the assumption of perfect competition, that is,
the agents representing the market participants do not try to manipulate the prices with the
help of speculation. To solve the equilibrium problem, the WALRAS method uses a Double
Auction. During that process, all agents send their utility functions for individual goods
to a central auctioneer who calculates the equilibrium prices. A separate auction is started
for every good. At the end, the resulting prices are transmitted back to all agents. As the
utilities of several goods of an agent may not be independent from each other, the agents can
react on the new equilibrium prices by re-adjusting their utility functions. Subsequently, the
process starts again. This iteration is repeated until the equilibrium prices are stabilized. As
we will show later, in our application we substitute the central auctioneer by a decentralized
equilibration algorithm.
The Enterprise [104] system is another example for market methods. Here, machines create
offers for jobs to be run on those machines. To this end, all jobs describe their necessary
environment in detail. After all machines have generated their offers, the jobs select between
these offers. The machine that provides the shortest response time has the highest priority
and will be chosen by the job. Within the Enterprise system all machines have the same
priority scheme which favors jobs with a shorter run time. Although our model is based on
this Enterprise method, it is neither restricted to a single objective function nor does it require
that all machines share the same objective function.

11.4.2 Economic Scheduling Model

In contrast to Buyya et al. [17, 18, 19] or Waldspurger [161], our scheduling model does not
rely on a single central scheduling instance. Moreover, we use a peer-to-peer like approach
in which all participants act independently and may have different objectives and policies.
Our method also supports the co-allocation of distributed resources in different domains. This
feature is useful for multi-site job execution.
The general application flow in our grid job scheduling infrastructure is presented in Figure



11.4. MARKET-ORIENTED SCHEDULING 153

4) Allocation is done

for maximizing the

objective for the

whole schedule,

which is the

combined objective

of all allocations

Grid

Scheduler

Grid

Scheduler
Grid

Scheduler

Grid

Scheduler

Local

Scheduler

Local

Scheduler
Local

Scheduler

Local

Scheduler
Local

Scheduler

Local

Scheduler

Grid

Scheduler

Grid

Scheduler

ApplicationApplication

Request
Request

Request Request Request

Offer

Schedule

Allocation_1

Allocation_2

Allocation_3

Offer

Attributes

ObjectiveFunction

Request

Requirements

Job Attributes

ObjectiveFunction

1) User or client

sends a

request

2)Scheduler asks other

Grid Schedulers

for offers

3) Remote Grid Scheduler

generates local offers or

queries other Domains.

The query is limited and

directed by search

parameters

5) The local Grid

Scheduler can

reallocate the

schedule to optimize

the objective or to

recover from system

changes

6) The client gets

feedback on the

resource allocation

7) Execution of a

job can be

initiated by the

local scheduler

Local Domain

Remote Domains

4) Allocation is done

for maximizing the

objective for the

whole schedule,

which is the

combined objective

of all allocations

Grid

Scheduler

Grid

Scheduler
Grid

Scheduler

Grid

Scheduler

Local

Scheduler

Local

Scheduler
Local

Scheduler

Local

Scheduler
Local

Scheduler

Local

Scheduler

Grid

Scheduler

Grid

Scheduler

ApplicationApplication

Request
Request

Request Request Request

Offer

Schedule

Allocation_1

Allocation_2

Allocation_3

Schedule

Allocation_1

Allocation_2

Allocation_3

Offer

Attributes

ObjectiveFunction

Offer

Attributes

ObjectiveFunction

Request

Requirements

Job Attributes

ObjectiveFunction

Request

Requirements

Job Attributes

ObjectiveFunction

1) User or client

sends a

request

2)Scheduler asks other

Grid Schedulers

for offers

3) Remote Grid Scheduler

generates local offers or

queries other Domains.

The query is limited and

directed by search

parameters

5) The local Grid

Scheduler can

reallocate the

schedule to optimize

the objective or to

recover from system

changes

6) The client gets

feedback on the

resource allocation

7) Execution of a

job can be

initiated by the

local scheduler

Local Domain

Remote Domains

Figure 11.8: Scheduling Steps.

11.8. We assume that each user has access to at least one computing site which may be his local
resource provider. In our scheduling model, a user submits his job request to the scheduler
of his local domain. The scheduler first analyzes this request and, if possible, creates new
offers for all local machines. After this step, a first selection takes place in which only the best
local offer is selected. The remaining request is forwarded to the schedulers of other known
domains. This is possible as long as the search depth of involved domains for this request
is not exceeded and the time to live value for this request is still valid. Many strategies are
possible to determine the domains to which the request should be forwarded.

This peer-to-peer approach allows the exploitation of network locality as users can query
their local or nearest domain first and the request is then forwarded to related sites. To this
end, each domain manages a list of other domains it may query for offers. Such a list can
be manually or automatically maintained with the option to consider a network structure or
a logical hierarchy. Furthermore, it is possible to include information services that provide
addresses for domains and information on the available resources. Note that the presented
model can be applied to Grid infrastructures with dedicated information services as well as
to completely decentralized peer-to-peer configurations.

The remote domains generate new offers and return their best offer to the requesting domain.
A domain does not answer to a request for a job if this request has already been processed
before, that is, a domain answers any request for a job only once in case the same request
may be forwarded from different domains. Afterwards, a second selection process takes place
in order to find the best offers among the returned results of this particular domain.



154 CHAPTER 11. GRID SCHEDULING

interrogation of

new
request

request
for the new
create offers

local machines

first selection

remote domains

second selection

create offer

Figure 11.9: General Application
Flow.

Check Request

Request

Search for free
intervals within

the schedule

of an interval

of an interval

create
offer

[no Multi−Site]

[Multi−Site]

coarse grain selection

fine grain selection

Figure 11.10: Local Offer Creation.

11.4.3 Economic Scheduling Algorithm

This section includes a description of the scheduling algorithm that has been implemented
for the presented infrastructure. The general application flow can be seen in Figure 11.9.
Note that this method is an auction with neither a central nor a de-central auctioneer. More-
over, the different objective functions of all participants are used for the equilibration process.
For each potential offer o of request j, the utility value UV j,o is evaluated and returned to
the originating domain that first has received the user’s request. The utility values are cal-
culated by the user supplied utility function UFj which can be extracted from the job and
offer parameters. In addition, the machine value MVi,j of the corresponding machine i can
be included.

UVj,o = UFj(MVi,j , o); MVi,j = MFi(j)

This machine value is derived from the machine objective function MF . The originating
domain selects the offer with the highest utility value UVj,o. In principle, this domain acts as an
auctioneer. A more detailed explanation of the local offer generation is given in Figure 11.10.
Within the Check Request phase, it is determined if either the best offer will be automatically
selected or if the user is going to select the best offer interactively among a given number of
possible offers. In the same step, it is checked whether the user supplied budget is sufficient
in order to process the job at the local machines within the domain. Additionally, it is deter-
mined whether the local resources meet the requirements of the request. Next, the necessary
scheduling parameters are extracted. The parameters include the earliest start time of the
job, the deadline, the maximum search time, the time until the resources will be reserved for
the job (reservation time), the expected run time, and the number of required machines. The
utility function is another parameter which is applied in the further selection process.



11.4. MARKET-ORIENTED SCHEDULING 155

If not enough resources can be found during the Check Request phase, but all other require-
ments can be satisfied by the local resources, a multi-site scheduling can be initiated to gather
the additional resources which are necessary to satisfy the request. The ability of integrat-
ing such co-allocation strategies into this model will later be discussed in more detail, see
Section 11.4.4.
The next step Search for idle intervals within the schedule tries to find all idle time intervals
within the requested time frame on the suitable resources. For a simple example assume a
parallel computer with dedicated nodes. An example schedule is given in Figure 11.11. The
black areas within the schedule are already allocated by other jobs. Now, a new incoming
job requests three nodes and has an earliest start time A, a deadline D, and a run time less
than (C −B). First, idle time intervals are extracted for each node. Next, these elements are
combined in order to find possible solutions. To this end, a list is created with triples of the
form {time, node number, d}, where d equals (+1) if the node with the specified number is
free at the examined time; d equals (-1) otherwise.
This generated list (sourceList) is used to find possible solutions as shown in the pseudo code
of Algorithm 11.1.

Algorithm 11.1 Algorithm for Creating Possible Offers.
Require: sourceList: list of triples (time,node,+/-1) sorted by increasing time

currentListOfFreeMachines = ∅;
time t = smallest time in sourceList;
while ((not enough offers found) AND (sourceList not empty)) do

tripleList = ∅;
tripleList = get and remove all next elements from sourceList with time t;
test for all elements in currentListOfFreeMachines whether the difference between the
beginning of the idle interval and time t is greater than or equal to the run time of the
job;
if (number of elements in currentListOfFreeMachines, which fulfill the time condition, is
greater than or equal to the needed number of nodes) then

create an offer from the elements of the currentListOfFreeMachines;
end if
according to value d add (+1) or remove (-1) all elements in tripleList to or from cur-
rentListOfFreeMachines;
t = next time t in sourceList;

end while

The given algorithm creates possible offers that are specified by start, end, run time and
the requested number of nodes. Note that we have not yet shown how the offer is created
from the node elements of idle time intervals in this list. This is achieved by the following
algorithm. This algorithm has the goal to determine a set of usable resources by using a list
of idle time intervals of resources. Note that the idle times of different resource elements may
have different start and end times. The resulting possible node allocations are characterized
by an earliest start time and a latest end time. To this end, a derivation of bucket sort is
used. In the first step, all intervals of idle resources with the same start time are collected in
the same bucket. In the second step, for each bucket the elements with the same end time
are collected in new buckets. At the end, each bucket consists of a list of resources that are
available between the same start and end time.



156 CHAPTER 11. GRID SCHEDULING

��������������

processors
1 2 3 4 5 6 7

A
B

C
D

time

Figure 11.11: Start Situation.

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

processors

time

D

A
1 2 3 4 5 6 7

Figure 11.12: Bucket 1.

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

processors

time

A
1 2 3 4 5 6 7

D

Figure 11.13: Bucket 2.

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

processors

time

A
1 2 3 4 5 6 7

D

Figure 11.14: Bucket 3.

For the example above, the algorithm creates three buckets as shown in Figures 11.12, 11.13,
and 11.14. After the creations of these buckets, suitable offers are generated either with
elements from one bucket if the bucket consists of enough resources or by combining elements
of different buckets. When using elements from different buckets with potentially different
start and end times, the latest start time and the earliest end time must be calculated. In our
example only Bucket 1 can satisfy the requirements alone and therefore an offer can be built
by using, for instance, Resources 1, 2, and 5.
In order to generate additional offers, all buckets which alone can satisfy a request with its
own elements are modified to contain one resource less than the required number. Afterwards,
the previous process of offer generation is repeated again. If a bucket does not contain enough
elements to satisfy a request, all elements of this bucket are taken into a new bucket. For
our example, this is true for the Buckets 2 and 3. If not enough offers have been found and
no bucket is further available, it is checked whether the remaining number of elements in
all buckets combined suffice the requested number of nodes. If this is the case, the bucket
elements are combined and the start and end times are adjusted to the latest start time
and the earliest end time. For our example, we use the elements {1,2} from Bucket 1, the
elements {3,4} from Bucket 2, and the element 7 from the last bucket. The additional offers
can only be generated by using those selected elements. Thus, the set of solutions including
the combination from Bucket 1 is: {{1,2,5}, {1,2,3}, {1,2,4}, {1,2,7}, {1,3,4}, {1,3,7}, {1,4,7},
{2,3,4}, {2,3,7}, {3,4,7}}.
After finishing the phase Search for idle intervals within the schedule from Figure 11.10,
a grain selection of one of these intervals is initiated in the next step. In general, a large
number of solutions could be created with only small changes for the start and end time
and then selecting the interval with the highest utility value. Due to the time constraints
of the scheduling algorithm, this is not feasible in practice. Therefore, we use a heuristic
that first selects several initial combinations. The start and end times for these combinations
are modified to improve the utility value. The combination with the highest utility value is
selected as the resulting offer (in phase fine selection of an interval in Figure 11.10). This



11.4. MARKET-ORIENTED SCHEDULING 157

approach can be parameterized by the number of steps denoting the number of different start
and end times within the given time interval. Note that we do not require the utility function
to be monotone. Therefore, this selection process is a heuristic approach.

After finishing the algorithm in this last step, several possible offers have been generated.

We have not yet specified the utility functions of the machine providers and the machine
users. In our implementation, any mathematical formula, using all valid time and resource
variables, is supported. Overall, in our approach among the offers we select the solution with
the highest value for the user’s utility function. Note that this process does not necessarily
yield the global maximum among all possible offers. The linkage to the objective function of
the machine provider is created by the price for the machine usage which equals the machine
provider’s utility function. The user can include this price in his utility function.

���������������
���������������
���������������
���������������

���������������
���������������
���������������
����������������������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

���
���
���

	�	
	�	
	�	


�
�


�
�


�
�


�����
�����
�����

�������������
�������������
�������������
�������������

���������������������������
���������������������������
���������������������������
���������������������������

���������
���������
���������
���������

�������
�������
�������
�������

�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

���
���
���

���
���
���

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

processors

time

idle processor times idle processor times

already allocated jobs new job

before job start (before)

or the end of the schedule (after)
idle processor times after the job completion

parallel to the job (parallel)

Figure 11.15: Parameters for the Calculation of the Provider Utility Function.

The provider of the machine can formulate a utility function in which additional variables
can be used that reflect the characteristics of the current schedule. Figure 11.15 shows those
variables that are used in our implementation. The variable before, in Figure 11.15, specifies
the processor times in the schedule in which the corresponding resources (nodes) are unused
before the job allocation. The variable after determines the processor times of unused re-
sources after the job end to the start of next job on the according resources or to the end of
the schedule. The variable parallel specifies the concurrently idle resource times during the
allocation of the job. In a graphical depiction of a schedule as in Figure 11.15, this is the
idle area parallel to the job for all nodes of the machine. The variable utilization specifies the
utilization of the machine if the job is allocated. This is defined by the ratio of the sum of
all allocated processor times and the whole available processor times from the current time
instant to the end of the schedule.



158 CHAPTER 11. GRID SCHEDULING

11.4.4 Co-Allocation (Multi-Site Scheduling)

In the following, we cover the situation when none of the local machines is alone able to
compute the job. In such a case, a multi-site allocation is sought by co-allocating resources
from different machines. As shown in Figure 11.10, a domain might request resources from
other domains. This process is only initiated if there is no single machine in any domain able
to satisfy the request. The main problem of multi-site scheduling is to find several appropriate
resources to execute the whole job in parallel. Note that the different machine providers within
market-oriented Grid scenarios do not have any insights regarding the allocation of machines
of other providers. Hence, the missing resources are queried from other domains by additional
requests for fixed time frames. To this end, several different start times are tried within the
possible time interval given in the job request. The process finishes if a solution is found or a
time limit is reached.
In our evaluation we used this co-allocation mechanism for executing computational jobs
spread over different machines. However, this approach can easily be extended for co-allocating
and coordinating different resource types. The same method can be applied to make reserva-
tion of network bandwidth, storage or software in conjunction with a computational job. The
need for more complex coordination can be found in workflows in which different job steps
may have dependencies. Within the presented economic model, the capability to individually
request certain resource offers can be used to build sophisticated Grid schedulers for such
coordination tasks.

11.4.5 Request and Offer Description

A basic component of an economically driven approach is a description language which is used
to specify such requests for resources and the corresponding offers. As mentioned before, it is
essential that requests for offers are very flexible. In the following, we briefly show a simple
example language which we used for the implementation in our economic scheduling model.
It will be essential for future Grid systems to support such communication protocols. This
request and offer description is presented in more detail by Ernemann et al. [48, 43].
Our example of a description language allows arbitrary attributes which are specified as nested
key value pairs in combination with the ability to specify several cases and constraints. Only
a few keys are specific for the management and scheduling environment. The description
language is used for requests, as well as for offers and resource descriptions. The syntax is
very similar in all cases. We allow complex statements in the formulation of the values. This
includes expressions and conditions to allow parameterized attribute specifications that can
be evaluated at run time. Examples are the utility function or the job length, which may be
derived from other attributes as the job cost or the available processor number/speed.
To better illustrate our description language, we give a brief example for a request formulation
in Figure 11.16. The example request includes assignments for the keys Hops to JobBudget.
The utility value depends on two conditions. The job requires either Linux or AIX as operating
system and needs between 8 to 32 nodes for Linux, respectively 64 nodes for AIX. For Linux,
the (UtilityValue) is defined as the negative value of (-StartTime). As the system tries to
maximize the UtilityValue the job should be started as soon as possible. Furthermore, the job
has a parameterized definition of the run time. For AIX, the minimization of the job costs is
anticipated in this example.



11.4. MARKET-ORIENTED SCHEDULING 159

REQUEST "Req001" {
KEY "Hops" {VALUE "HOPS" {2}}
KEY "MaxOfferNumber" {VALUE "MaxOfferNumber" {5}}
KEY "StartTime" {VALUE "StartTime" {900000}}
KEY "EndTime" {VALUE "EndTime" {900028}}
KEY "SearchTime" {VALUE "SearchTime" {899956}}
KEY "JobBudget" {VALUE "JobBudget" {900.89}}
KEY "Utility" {

ELEMENT 1 {
CONDITION{ (OperationSystem EQ "Linux")
&& ((NumberOfProcessors >= 8) && (NumberOfProcessor <= 32))}

VALUE "UtilityValue" {-StartTime}
VALUE "RunTime" {43*NumberOfProcessor}

}
ELEMENT 2 {
CONDITION{(OperationSystem EQ "AIX")
&& ((NumberOfProcessors >= 8) && (NumberOfProcessor <= 64))}

VALUE "UtilityValue" {-JobCost}
VALUE "RunTime" {86*NumberOfProcessor}

}
}

}

Figure 11.16: Example of a Request Description.

11.4.6 Simulation and Evaluation

We examine the performance of the economic scheduling method by assuming that the overall
objective is actually the reduction of the overall response time. This allows the comparison
to the conventional scheduling algorithms as presented in Section 11.3. For the economic
scheduling model we have to use corresponding utility functions for minimizing the response
time. However, we do not know yet which objective functions for machines and users achieve
a low average weighted response time. Therefore, several utility functions have been examined
in this work as a first starting point.

11.4.6.1 Resource Configurations

We use the same configurations as presented in Section 11.3.1 in Table 11.1. Again, all con-
figurations use a total of 512 resources.
For the simulations, 6 different provider objective functions were used. Here, we briefly de-
scribe the first provider machine function MF1 whose included terms are also used in the
other functions:

NumberOfProcessors ·RunTime

calculates the resource consumption that the job is using within the schedule. The second
term calculates the idle processor times before and after the job as well as the parallel idle
times for all other resources within the local schedule (see Figure 11.15.):

before + after + parallel.



160 CHAPTER 11. GRID SCHEDULING

The last term of the formula is:

1− parallel rel,

where parallel rel describes the relation between the idle processor times in parallel to the
job within the schedule (parallel) and the processor times actually used by the job. A small
value for this factor describes that the idle processor times in parallel are small in comparison
to the job resource consumption. This leads to the following objective function MF1 and its
derivations MF2 to MF6:

MF1 = (NumberOfProcessors ·RunTime

+ after + before + parallel) · (1− parallel rel)
MF2 = (NumberOfProcessors ·RunTime

+ after + before + parallel),
MF3 = (NumberOfProcessors ·RunTime

+ after + before) · (1− parallel rel),
MF4 = (NumberOfProcessors ·RunTime

+ parallel) · (1− parallel rel),
MF5 = (NumberOfProcessors ·RunTime

+ after + parallel) · (1− parallel rel),
MF6 = (NumberOfProcessors ·RunTime

+ before + parallel) · (1− parallel rel).

11.4.6.2 Job Configurations

For the evaluation, we use the same workloads as described in Table 11.2 of Section 11.3.2.
Additionally, a utility function for each job is now necessary to represent the preferences of
the corresponding user. To this end, the following 5 user utility functions (UF) have been
applied in our simulations. During a simulation, we assume that all users have the same utility
function. Again, these are example utility functions to get first information on the impact on
the scheduling performance. Further work is necessary for optimizing these functions for real
applications.
The first user utility function prefers the earliest start time of the job. All processing costs
are ignored.

UF1 = (−StartT ime).

The second user utility function only considers the calculation costs caused by the job.

UF2 = (−JobCost).

The last user utility functions are combinations of the first two, but with different weights.

UF3 = (−(StartT ime + JobCost))
UF4 = (−(StartT ime + 2 · JobCost))
UF5 = (−(2 · StartT ime + JobCost)).



11.4. MARKET-ORIENTED SCHEDULING 161

0

2

4

6

8

10

12

14

16

18

20

W4 W1 W2 W3

Workloads

A
W

R
T

(i
n

1
0

0
0

s
e

c
o

n
d

s
)

m128 Economic

m128 Conservative

m256 Economic

m256 Conservative

m384 Economic

m384 Conservative

m512 Economic

m512 Conservative

Figure 11.17: Comparison Between Economic and Conventional Scheduling.

11.4.6.3 Results for the Economic Strategies

Figure 11.17 shows a comparison of the average weighted response time for the economic
method and for the conventional FCFS/backfilling scheduling system. For both systems the
best results achieved have been selected. Note that the used machine and utility functions
differ between the various economic simulations. The results show that for all used workloads
and all resource configurations, the economically based scheduling system has the capability
to outperform the conventional FCFS/backfilling strategy. Note that the economic scheduler
is able to outperform backfilling as it is not restricted in the job execution order.
Figure 11.18 gives a comparison between the economic and the conventional scheduling system
for only one machine/utility function combination. With the exception of W3 and m513,
the used combination of MF1 and UF1 outperforms the conventional system for all used
workloads and the configurations m128 and m512. Only for the m512 configuration and the
W3 workload trace, the economic system and the conventional system result in an equal
average weighted response time.
Certain combinations of machine and user utility functions can provide good results for dif-
ferent workloads. In the following, we compare different machine/utility functions which
are exemplarily shown for the resource configuration m128. In Figure 11.19 the average
weighted response time is given for all different machine functions in combination with
utility function UF3. The average weighted response time for the machine function MF2

performs significantly better than all other machine functions. The factor 1 − parallel rel,
which is used in all other machine functions, does not work well for this machine configu-
ration. Instead it seems to be beneficial to use absolute values for the processor times, e.g.
(NumberOfProcessors ·RunTime+ after + before+ parallel). Unexpectedly, Figure 11.19



162 CHAPTER 11. GRID SCHEDULING

0

2

4

6

8

10

12

14

16

18

20

W4 W1 W2 W3

Workloads

A
W

R
T

(i
n

1
0

0
0

s
e

c
o

n
d

s
)

m128 Economic

m128 Conservative Multi-Site

m512 Economic

m512 Conservative

Figure 11.18: Comparison Between Economic and Conventional Scheduling for the Resource
Configurations m128 and m512 Using MF1 - UF1.

also shows that the intention to reduce the free areas within the schedule before a job starts
(with attribute before) results in very poor average weighted response times (see the results
for MF1, MF3, MF6).
Utility function UF1, which only takes the job start time into account, results in the best
average weighted response time. In this case, no attention was paid to the resulting job cost.
This means that no minimization of the idle processor times in parallel to the job is regarded.
The utility functions which include this job cost yield inferior results in terms of the average
weighted response times. The second best result originates from the usage of the utility
function UF3. In opposite to UF1, the starting time and the job costs are equally weighted.
A higher response time was achieved for all other utility combinations, in which either only
the job costs (UF2) or unbalanced weights for the starting time are used.



11.4. MARKET-ORIENTED SCHEDULING 163

0

50

100

150

200

250

300

MF 1 MF 2 MF 3 MF 4 MF 5 MF 6

Machine Functions

A
v

e
ra

g
e

W
e

ig
h

te
d

R
e

s
p

o
n

s
e

T
im

e
(i

n
1

0
0

0
s

e
c

o
n

d
s

)

Figure 11.19: The Resulting Average Weighted Response for Resource Configuration m128,
Utility Function UF3 and Several Machine Functions for Workload W4.



Chapter 12

Conclusion

This work mainly motivates and discusses the concept of multi-objective scheduling systems.
Such multi-objective systems can be observed in many real life scenarios. Exemplarily, we
introduced the problem of generating flight plans for the allocation of airplanes and airplane
crews.
The scheduling of massively parallel processing systems has also been identified as a multi-
objective scheduling problem. Here, many different users or user groups want to have access
to a limited amount of processing nodes. Furthermore, the machine providers have different
commercial relationships with those users. Thus, the machine providers want to process the
computational jobs of the different users depending on their assigned preferences. However,
existing scheduling strategies are not able to incorporate such preferences in a good way. The
usage of quotas or the establishment of partitions normally decreases the utilization of the
parallel system. Hence, new multi-objective scheduling strategies must be developed. Several
possible concepts to derive such scheduling strategies are presented in this work.
In order to develop such multi-objective strategies, the general scheduling framework has been
introduced and extended to several objectives. Our scheduling problems are computationally
expensive. This motivates the usage of heuristically driven algorithms. This work provides
an overview of all multi-objective scheduling problems with more than 2 objectives that are
known to the author. This collection of existing strategies further motivated the development
of new strategies that fit to our problem.
Our concept to derive multi-objective scheduling strategies consists of several steps. Within
one of those steps we derive the Pareto front of possible scheduling solutions. This is necessary
for the machine providers to identify their specific preferences and to derive estimates for
possible scheduling improvements compared with the existing standard scheduling strategies.
To this end, we used multi-objective Evolutionary Algorithms to generate the Pareto fronts.
Thus, this work presented the concepts of such multi-objective Evolutionary Algorithms in
more detail.
The state of the art in scheduling massively parallel processing systems has also been pre-
sented. The corresponding scheduling strategies are used for comparisons. As motivated in
this work, the development of new strategies in this area is based on workload traces from
existing parallel machine installations. However, most of those traces originate from different
machine environments. Hence, the achieved scheduling results cannot be compared easily.
Therefore, this work introduced a method to scale such workload traces to a unique machine
size. Those modified workloads build the foundation of the later development of scheduling

164



165

strategies.
This development generates the Pareto fronts for all existing scaled workload traces first. To
this end, we used two different approaches that use multi-objective Evolutionary Algorithms.
The first approach is based on the permutation of job sequences. Here, we found that Evo-
lutionary Algorithms cannot be used as black box optimization tools. Furthermore, problem
specific knowledge must be included to generate Pareto fronts with a higher diversity and
a better coverage of the possible solution space. The second approach, which is real-value
encoded, is relatively simple and leads to a very good coverage of a smaller solution space
compared with the first approach.
In order to derive a robust scheduling strategy, our goal was to generate a representative
Pareto front by moving and scaling the different generated fronts. However, this approach did
not lead to acceptable results. Therefore, we used two other strategies to derive scheduling
strategies that can be applied in various environments with a similar performance. The first
attempt optimizes a scheduling strategy for a single workload. Then, this strategy is applied
to other workload traces and the outcome is analyzed. The second attempt aims to optimize
the strategy by using all workload traces in parallel during the development.
For a proof of concept, we defined a scheduling objective that is based on the selection of
preferred regions and a linear objective function with a similar strength of the user groups 1
and 2. Note that our methodology is not limited to this scheduling objective.
Based on the defined scheduling objective and the scaled workload traces, we derived six
different scheduling strategies. All of these strategies have been analyzed in detail. To this
end, we tested whether each of these approaches is able to individually optimize scheduling
strategies for a single workload trace. Furthermore, we analyzed how well such a generated
strategy can be applied to the other traces without further adaptation. Finally, we used each
of the presented six approaches to develop a strategy based on all workloads. The resulting
schedules for the individual traces have been discussed in detail.
We found that each of the proposed development strategies is able to improve the scheduling
outcome for individual workload traces compared to the standard strategies. Especially, the
strategies based on Genetic Fuzzy systems perform very well. The application of scheduling
strategies that were optimized for single workload traces to other environments only succeeded
with the Michigan and the CCA approach. The scheduling quality for the other approaches
at least for one workload trace was much lower relative to the standard scheduling strategies.
The development of scheduling strategies based on all workload traces should be done by
using the approaches based on the Genetic Fuzzy systems. Only those approaches lead to
good results for all workload traces. In general, we recommend the CCA approach as it has
a good performance in all of our testing environments. Furthermore, the required number of
simulations during the development is relatively small compared with the Michigan approach,
which also leads to good scheduling strategies in all of our analyzed scenarios.
As the usage of massively parallel processing systems can still not satisfy the computational
demand of the users, Grid Computing extends this concept. Here, several parallel systems of
different independent providers are interconnected. This enables the users within a Grid to
utilize different heterogeneous resources. However, the complexity of the scheduling strategy
further increases in comparison to single parallel installations as different providers have
different objectives. Within this work, we analyzed several different scheduling strategies
for such Grid scenarios by again using workload traces from real existing machines. The
economically driven scheduling approach provides the highest flexibility and adaptability to
the Grid scenario. Thus, this approach should be used while building larger Computational



166 CHAPTER 12. CONCLUSION

Grids.

Future Work

This thesis uses workload traces from real existing machines during the development of
scheduling strategies for parallel computers and for the Grid. As mentioned above, they
include all hidden dependencies between jobs and user submissions. However, by using work-
load traces instead of a workload model the user feedback behavior cannot be included. This
is a major disadvantage, as users might react on certain scheduling decisions. Hence, realistic
workload models are necessary in order to achieve further improvements of the scheduling
strategies. The existence of such models is further necessary in order to extend the concept of
user group prioritization within the Grid scenario. Here, users are free to choose the resources
of the participating providers. In this context, the modelling of the feedback behavior is even
more desired.
As mentioned in Chapter 10, we think that future approaches to develop scheduling strategies
should be based on Genetic Fuzzy systems. However, we argue that a larger collection of
sorting criteria with a simple FCFS might be better to adapt to the different scheduling
scenarios.
The Grid scheduling scenario within this work is concentrated on assigning processor nodes
to computational tasks. However, in real Grid environments the usage of the interconnection
network as well as the corresponding computer programs and user data must be scheduled.
Only a combined scheduling approach that incorporates all those aspects will be able to solve
the underlying problem. Again, we motivate the application of the introduced economically
driven approach in the Grid scenario. The presented machine and user utility functions for our
economic approach were just examples that have proven to increase the scheduling quality.
Future research projects could use Evolutionary Algorithms to parameterize more complex
utility functions that might further improve the corresponding scheduling outcome.



Bibliography

[1] E. H. L. Aarts, J. H. M. Korst, and P. J. M. van Laarhoven. Local Search in Combina-
torial Optimization, chapter Simulated annealing, pages 91–120. Wiley, 1997.

[2] S. Albers. Online algorithms: A survey. Mathematical Programming, 97:3–26, 2003.

[3] P. Alfeld. Mathematical Methods in Computer Aided Geometric Design, chapter Scat-
tered data interpolation in three or more variables, pages 1–34. Academic Press Pro-
fessional, Inc., 1989.

[4] I. Amidor. Scattered data interplolation methods for electronic imaging systems: A
survey. Journal of Electronic Imaging, 11(2):157–176, April 2002.

[5] E. J. Anderson, C. A. Glass, and C. N. Potts. Local Search in Combinatorial Optimiza-
tion, chapter Machine scheduling, pages 361–414. Wiley, 1997.

[6] T. Bäck, D. B. Fogel, and Z. Michalewicz. Handbook of Evolutionary Computation.
Oxford University Press, New York, and Institute of Physics Publishing, Bristol, 1997.

[7] T. Bäck and H.-P. Schwefel. An overview of evolutionary algorithms for parameter
optimization. Evolutionary Computation, 1(1):1–23, 1993.

[8] T. Bäck and H.-P. Schwefel. Evolutionary computation: An overview. In T. Fukuda,
T. Furuhashi, and D. B. Fogel, editors, Proceedings of the 3rd IEEE International Con-
ference on Evolutionary Computation (ICEC96), Nagoya, pages 20–29, Piscataway NJ,
1996. IEEE Press.

[9] T. P. Bagchi. Pareto-optimal solutions for multi-objective production scheduling prob-
lems. In E. Zitzler, K. Deb, L. Thiele, C. A. Coello Coello, and D. Corne, editors,
Proceedings of the 1st International Conference on Evolutionary Multi-Criterion Opti-
mization (EMO01), volume 1993 of Lecture Notes in Computer Science (LNCS), pages
458–471. Springer, 2001.

[10] Z.-Z. Bai and G.-Q. Li. Restrictively preconditioned conjugate gradient methods for
systems of linear equations. Journal of Numerical Analysis, 23(4):561–580, 2003.

[11] J. Balicki and Z. Kitowski. Multicriteria evolutionary algorithm with tabu search for
task assignment. In E. Zitzler, K. Deb, L. Thiele, C. A. Coello Coello, and D. Corne,
editors, Proceedings of the 1st International Conference on Evolutionary Multi-Criterion
Optimization (EMO01), volume 1993 of Lecture Notes in Computer Science (LNCS),
pages 373–384. Springer, 2001.

167



168 BIBLIOGRAPHY

[12] H.-G. Beyer and H.-P. Schwefel. Evolution strategies – A comprehensive introduction.
Natural Computing, 1(1):3–52, 2002.

[13] J. Blazewicz, W. Cellary, R. Slowinsky, and J. Weglarz. Scheduling under Resource
Constraints: Deterministic models. Baltzer Science Publishers, 1986.

[14] A. Bonarini. Fuzzy Modelling: Paradigms and Practice, chapter Evolutionary Learning
of Fuzzy rules: competition and cooperation, pages 265–284. Kluwer Academic Press,
1996.

[15] M. Brune, J. Gehring, A. Keller, and A. Reinefeld. Managing clusters of geographi-
cally distributed high-performance computers. Concurrency - Practice and Experience,
11(15):887–911, 1999.

[16] J. Bruno, E. G. Coffman, and R. Sethi. Scheduling independent tasks to reduce mean
finishing time. Communications of the ACM, 17:382–387, 1974.

[17] R. Buyya, D. Abramson, and J. Giddy. An evaluation of economy-based resource trading
and scheduling on computational power grids for parameter sweep applications. In
Proceedings of the 2nd Workshop on Active Middleware Services (AMS00), in conjuction
with Ninth IEEE International Symposium on High Performance Distributed Computing
(HPDC00), Pittsburgh. Kluwer Academic Press, Norwell, August 2000.

[18] R. Buyya, D. Abramson, J. Giddy, and H. Stockinger. Economic models for resource
management and scheduling in grid computing. Special Issue on Grid Computing En-
vironments, The Journal of Concurrency and Computation: Practice and Experience
(CCPE02), 14:1507–1542, November–December 2002.

[19] R. Buyya, D. Abramson, and S. Venugopal. The grid economy. In Special Issue of the
Proceedings of the IEEE on Grid Computing. IEEE Press, 2005.

[20] S. J. Chapin, W. Cirne, D. G. Feitelson, J. P. Jones, S. T. Leutenegger,
U. Schwiegelshohn, W. Smith, and D. Talby. Benchmarks and standards for the evalu-
ation of parallel job schedulers. In Proceedings of Job Scheduling Strategies for Parallel
Processing (JSSPP99), volume 1659 of Lecture Notes in Computer Science (LNCS),
pages 67–90. Springer, April 1999.

[21] W. Cirne and F. Berman. A comprehensive model of the supercomputer workload. In
Proceedings of the 4th Workshop on Workload Characterization, pages 140–148. IEEE
Press, December 2001.

[22] J. K. Cochran, S.-M. Horng, and J. W. Fowler. A multi-population genetic algorithm
to solve multi-objective scheduling problems for parallel machines. Computers and
Operations Research, 30(7):1087–1102, 2003.

[23] C. A. Coello Coello, D. A. Van Veldhuizen, and G. Lamont. Evolutionary Algorithms
for Solving Multi-Objective Problems. Kluwer Academic Publishers, Boston, MA, 2002.

[24] O. Cordón, F. Herrera, F. Hoffmann, and L. Magdalena. GENETIC FUZZY SYSTEMS
- Evolutionary Tuning and Learning of Fuzzy Knowledge Bases, volume 19 of Advances
in Fuzzy Systems - Applications and Theory. World Scientific, Singapore, July 2001.



BIBLIOGRAPHY 169

[25] C. Cotta and J. M. Troya. Genetic forma recombination in permutation flowshop
problems. Evolutionary Computation, 6(1):25–44, 1998.

[26] K. Czajkowski, I. Foster, C. Kesselman, S. Martin, W. Smith, and S. Tuecke. A resource
management architecture for metacomputing systems. In Proceedings of Job Scheduling
Strategies for Parallel Processing (JSSPP98), volume 1459 of Lecture Notes in Computer
Science, pages 62–68. Springer, 1998.

[27] K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. John Wiley &
Sons, Chichester, UK, 2001.

[28] K. Deb and R. B. Agrawal. Simulated binary crossover for continuous search space.
Complex Systems, 9:115–148, 1995.

[29] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast and elitist multiobjective
genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation, 6(2):182–
197, 2002.

[30] K. Deb and P. Chakroborty. Time scheduling of transit systems with transfer consid-
erations using genetic algorithms. Evolutionary Computation, 6(1):1–24, 1998.

[31] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A Fast and Elitist Multiobjec-
tive Genetic Algorithm: NSGA–II. IEEE Transactions on Evolutionary Computation,
6(2):182–197, April 2002.

[32] U. Dorndorf, A. Drexl, Y. Nikulin, and E. Pesch. Flight gate scheduling: State-of-the-art
and recent developments. Technical Report 584, Institut für Betriebswirtschaftslehre,
Kiel, 2004.

[33] A. B. Downey. A parallel workload model and its implications for processor allocation.
Technical Report CSD-96-922, University of California at Berkeley, 1996.

[34] A. B. Downey and D. G. Feitelson. The elusive goal of workload characterization.
Performance Evaluation Review, 26(4):14–29, March 1999.

[35] A. Drexl and Y. Nikulin. Multicriteria airport gate assignment and pareto simulated
annealing. Technical Report 586, Institut für Betriebswirtschaftslehre, Kiel, 2005.

[36] M. Drozdowski. Scheduling multiprocessor tasks - an overview. European Journal of
Operational Research, 94:215–230, 1996.

[37] J. Du and J. Leung. Complexity of scheduling parallel task systems. SIAM Journal on
Discrete Mathematics, 2(4):473–487, November 1989.

[38] M. Ehrgott and X. Gandibleux. A survey and annotated bibliography of multiobjective
combinatorial optimization. OR Spektrum, 22:425–460, 2000.

[39] M. Emmerich, N. Beume, and B. Naujoks. An emo algorithm using the hypervolume
measure as selection criterion. In C. A. Coello Coello, A. H. Aguirre, and E. Zitzler, ed-
itors, Proceedings of the 3rd International Conference on Evolutionary Multi-Criterion
Optimization (EMO05), volume 3410 of Lecture Notes in Computer Science (LNCS),
pages 62–76. Springer, 2005.



170 BIBLIOGRAPHY

[40] C. Ernemann, V. Hamscher, U. Schwiegelshohn, A. Streit, and R. Yahyapour. Enhanced
algorithms for multi-site scheduling. In M. Parashar, editor, Proceedings of the 3rd
International Workshop on Grid Computing (GRID02), volume 2536 of Lecture Notes
in Computer Science (LNCS), pages 219–231. Springer, 2002.

[41] C. Ernemann, V. Hamscher, U. Schwiegelshohn, A. Streit, and R. Yahyapour. On
advantages of grid computing for parallel job scheduling. In Proceedings of the
2nd IEEE/ACM International Symposium on Cluster Computing and the Grid (CC-
GRID02), pages 39–46. IEEE Press, May 2002.

[42] C. Ernemann, V. Hamscher, A. Streit, and R. Yahyapour. On effects of machine con-
figurations on parallel job scheduling in computational grids. In Proceedings of the
International Conference on Architecture of Computing Systems (ARCS02), pages 169–
179. VDE, April 2002.

[43] C. Ernemann, V. Hamscher, and R. Yahyapour. Economic scheduling in grid computing.
In Proceedings of Job Scheduling Strategies for Parallel Processing (JSSPP02), volume
2537 of Lecture Notes in Computer Science (LNCS), pages 128–152. Springer, 2002.

[44] C. Ernemann, V. Hamscher, and R. Yahyapour. Benefits of global grid computing
for job scheduling. In R. Buyya, editor, Proceedings of 5th IEEE/ACM International
Workshop on Grid Computing (GRID04), in Conjunction with (SuperComputing04),
pages 374–379. IEEE Computer Society, November 2004.

[45] C. Ernemann, M. Krogmann, J. Lepping, and R. Yahyapour. Scheduling on the top 50
machines. In D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn, editors, Proceedings
of Job Scheduling Strategies for Parallel Processing (JSSPP04), volume 3277 of Lecture
Notes in Computer Science (LNCS), pages 17–46. Springer, October 2004.

[46] C. Ernemann, U. Schwiegelshohn, M. Emmerich, L. Schönemann, and N. Beume.
Scheduling algorithm development based on complex owner defined objectives. Techni-
cal Report 191/05, SFB 531, CI-Report, University of Dortmund, January 2005.

[47] C. Ernemann, B. Song, and R. Yahyapour. Scaling of workload traces. In D. G. Feitelson,
L. Rudolph, and U. Schwiegelshohn, editors, Proceedings of Job Scheduling Strategies
for Parallel Processing (JSSPP03), volume 2862 of Lecture Notes in Computer Science
(LNCS), pages 166–183. Springer, October 2003.

[48] C. Ernemann and R. Yahyapour. Grid Resource Management - State of the Art and
Future Trends, chapter Applying Economic Scheduling Methods to Grid Environments,
pages 491–506. Kluwer Academic Publishers, 2003.

[49] R. Farwig. Rate of convergence of shepard’s global interpolation formula. Mathematics
of Computation, 46(174):577–590, 1986.

[50] D. G. Feitelson. Packing schemes for gang scheduling. In D. G. Feitelson and L. Rudolph,
editors, Proceedings of Job Scheduling Strategies for Parallel Processing (JSSPP96),
volume 1162 of Lecture Notes in Computer Science (LNCS), pages 89–110. Springer,
1996.



BIBLIOGRAPHY 171

[51] D. G. Feitelson. Memory usage in the LANL CM-5 workload. In D. G. Feitelson and
L. Rudolph, editors, Proceedings of Job Scheduling Strategies for Parallel Processing
(JSSPP97), volume 1291 of Lecture Notes in Computer Science (LNCS), pages 78–94.
Springer, 1997.

[52] D. G. Feitelson. Workload modeling for performance evaluation. In M. C. Calzarossa and
S. Tucci, editors, Performance Evaluation of Complex Systems: Techniques and Tools,
volume 2459 of Lecture Notes in Computer Science (LNCS), pages 114–141. Springer,
2002.

[53] D. G. Feitelson. Metric and Workload Effects on Computer Systems Evaluation. Com-
puter, 36(9):18–25, September 2003.

[54] D. G. Feitelson. Parallel workload archive. http://www.cs.huji.ac.il/labs/paral-
lel/workload/, January 2005.

[55] D. G. Feitelson and M. A. Jette. Improved utilization and responsiveness with gang
scheduling. In D. G. Feitelson and L. Rudolph, editors, Proceedings of Job Scheduling
Strategies for Parallel Processing (JSSPP97), volume 1291 of Lecture Notes in Computer
Science (LNCS), pages 238–261. Springer, 1997.

[56] D. G. Feitelson and B. Nitzberg. Job characteristics of a production parallel scientific
workload on the NASA ames iPSC/860. In D. G. Feitelson and L. Rudolph, editors,
Proceedings of Job Scheduling Strategies for Parallel Processing (JSSPP95), volume 949
of Lecture Notes in Computer Science (LNCS), pages 337–360. Springer, 1995.

[57] D. G. Feitelson and L. Rudolph. Metrics and benchmarking for parallel job scheduling.
In D. G. Feitelson and L. Rudolph, editors, Proceedings of Job Scheduling Strategies
for Parallel Processing (JSSPP98), volume 1459 of Lecture Notes in Computer Science
(LNCS), pages 1–24. Springer, 1998.

[58] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C. Sevcik, and P. Wong. Theory
and practice in parallel job scheduling. In Proceedings of Job Scheduling Strategies
for Parallel Processing (JSSPP97), volume 1291 of Lecture Notes in Computer Science
(LNCS), pages 1–34. Springer, 1997.

[59] D. G. Feitelson and A. M. Weil. Utilization and predictability in scheduling the IBM SP2
with backfilling. In Proceedings of the 12th International Parallel Processing Symposium
and the 9th Symposium on Parallel and Distributed Processing, pages 542–547. IEEE
Computer Society Press, 1998.

[60] L. J. Fogel. Autonomous automata. Industrial Research, 4:14–19, 1962.

[61] C. M. Fonseca and P. J. Fleming. Genetic algorithms for multiobjective optimization:
Formulation, discussion and generalization. In Proceedings of the 5th International
Conference on Genetic Algorithms, pages 416–423. Morgan Kaufmann, 1993.

[62] I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann Publishers, 1999.



172 BIBLIOGRAPHY

[63] C. Franke, J. Lepping, F. Hoffmann, and U. Schwiegelshohn. Development of scheduling
strategies with genetic fuzzy systems. Forschungsbericht 0106, Fakultät für Elektrotech-
nik und Informationstechnik, Universität Dortmund, May 29 2006. ISSN 0941-4169.

[64] C. Franke, J. Lepping, and U. Schwiegelshohn. On advantages of scheduling using
genetic fuzzy systems. In E. Frachtenberg and U. Schwiegelshohn, editors, Proceed-
ings of Job Scheduling Strategies for Parallel Processing (JSSPP06), Lecture Notes in
Computer Science (LNCS). Springer, 2006. to appear.

[65] C. Franke, U. Schwiegelshohn, and R. Yahyapour. Job scheduling for computational
grids. Forschungsbericht 0206, Fakultät für Elektrotechnik und Informationstechnik,
Universität Dortmund, May 29 2006. ISSN 0941-4169.

[66] M. Garey and R. L. Graham. Bounds for multiprocessor scheduling with resource
constraints. SIAM Journal on Computing, 4(2):187–200, June 1975.

[67] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, 1979.

[68] R. Gibbons. A historical application profiler for use by parallel schedulers. In Pro-
ceedings of Job Scheduling Strategies for Parallel Processing (JSSPP97), volume 1291
of Lecture Notes in Computer Science (LNCS), pages 58–77. Springer, 1997.

[69] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal of Applied
Mathematics, 17(2):416–429, 1969.

[70] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Kan. Optimization and
approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete
Mathematics, 15:287–326, 1979.

[71] M. Guntsch and M. Middendorf. Solving multi-criteria optimization problems with
population-based aco. In C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb, and
L. Thiele, editors, Proceedings of the 2nd International Conference on Evolutionary
Multi-Criterion Optimization (EMO03), volume 2632 of Lecture Notes in Computer
Science (LNCS), pages 464–478. Springer, 2003.

[72] P. Hajela and C.-Y. Lin. Genetic search strategies in multi-criterion optimal design.
Structural Optimization, 4(2):99–107, 1992.

[73] L. Hall, D. B. Shmoys, and J. Wein. Scheduling to minimize average completion time:
Off-line and on-line algorithms. In Proceedings of the 7th SIAM Symposium on Discrete
Algorithms (SODA96), pages 142–151. SIAM, Philadelphia, January 1996.

[74] V. Hamscher, U. Schwiegelshohn, A. Streit, and R. Yahyapour. Evaluation of job-
scheduling strategies for grid computing. In R. Buyya and M. Baker, editors, Proceedings
of the 7th International Conference on High Performance Computing (HiPC00), volume
1971 of Lecture Notes in Computer Science (LNCS), pages 191–202, Bangalore, Indien,
2000. Springer.

[75] R. L. Hardy. Multiquadrics equations of topography and other irregular surfaces. Jour-
nal of Geophysical Research, 76:1905–1915, 1971.



BIBLIOGRAPHY 173

[76] E. Hart, P. Roos, and J. Nelson. Solving a real-world problem using an evolving heuris-
tically driven schedule builder. Evolutionary Computation, 6(1):61–80, 1998.

[77] E. Hart, P. Ross, and D. Corne. Evolutionary scheduling: A review. Genetic Program-
ming and Evolvable Machines, 6(2):191–220, 2005.

[78] A. Hertz, E. Taillard, and D. de Werra. Local Search in Combinatorial Optimization,
chapter Tabu search, pages 121–136. Wiley, 1997.

[79] F. Hoffmann. Evolutionary algorithms for fuzzy control system design. Proceedings of
the IEEE, 89(9):1318–1333, September 2001.

[80] J. H. Holland. Outline for a logical theory of adaptive systems. Journal of the ACM,
9:297–314, 1962.

[81] J. Horn, N. Nafpliotis, and D. E. Goldberg. A Niched Pareto Genetic Algorithm for Mul-
tiobjective Optimization. In Proceedings of the 1st IEEE Conference on Evolutionary
Computation (ICEC95), in conjunction with the IEEE World Congress on Computa-
tional Intelligence, volume 1, pages 82–87, Piscataway, New Jersey, 1994. IEEE Service
Center.

[82] S. Hotovy. Workload evolution on the cornell theory center IBM SP2. In Proceedings
of Job Scheduling Strategies for Parallel Processing (JSSPP96), volume 1162 of Lecture
Notes in Computer Science (LNCS), pages 27–40. Springer, 1996.

[83] A. Iosup, D. H. J. Epema, C. Franke, A. Papaspyrou, L. Schley, B. Song, and
R. Yahyapour. On modeling synthetic workloads for grid performance evaluation. In
E. Frachtenberg and U. Schwiegelshohn, editors, Proceedings of Job Scheduling Strate-
gies for Parallel Processing (JSSPP06), Lecture Notes in Computer Science (LNCS).
Springer, 2006. to appear.

[84] J. Jann, P. Pattnaik, H. Franke, F. Wang, J. Skovira, and J. Riodan. Modeling of
workload in MPPs. In D. G. Feitelson and L. Rudolph, editors, Proceedings of Job
Scheduling Strategies for Parallel Processing (JSSPP97), volume 1291 of Lecture Notes
in Computer Science (LNCS), pages 95–116. Springer, 1997.

[85] T. Jansen and R. P. Wiegand. Exploring the explorative advantage of the cooperative
coevolutionary (1+1) ea. In E. Cantú-Paz et al., editor, Genetic and Evolutionary Com-
putation Conference (GECCO03), volume 2723 of Lecture Notes in Computer Science
(LNCS), pages 310–321. Springer, 2003.

[86] Y. Jin, W. von Seelen, and B. Sendhoff. On generating fc3 fuzzy rule systems from
data using evolution strategies. IEEE Transactions on System, Man and Cybernetics,
29(6):829–845, December 1999.

[87] D. S. Johnson. Approximation algorithms for combinatorial problems. Journal of
Computer System Science, 9:256–278, 1974.

[88] C.-F. Juang, J.-Y. Lin, and C.-T. Lin. Genetic Reinforcement Learning through Sym-
biotic Evolution for Fuzzy Controller Design. IEEE Transactions on System, Man and
Cybernetics, 30(2):290–302, April 2000.



174 BIBLIOGRAPHY

[89] T. Kawaguchi and S. Kyan. Worst case bound of an LRF schedule for the mean weighted
flow-time problem. SIAM Journal on Computing, 15(4):1119–1129, November 1986.

[90] J. Kennedy and R. C. Eberhart. Particle swarm optimization. In Proceedings of the
1995 IEEE International Conference on Neural Networks, pages 1942–1948, Piscataway,
New Jersey, 1995. IEEE Service Center.

[91] C. Kenyon and G. Cheliotis. Grid Resource Management - State of the Art and Future
Trends, chapter Grid Resource Commercialization - Economic Engineering and Delivery
Scenarios, pages 465–478. Kluwer Academic Publishers, 2003.

[92] H. Kita, Y. Yabumoto, N. Mori, and Y. Nishikawa. Multi-objective optimization by
means of the thermodynamical genetic algorithm. In Proceedings of the 4th International
Conference on Parallel Problem Solving from Nature (PPSN96), Berlin, volume 1141
of Lecture Notes in Computer Science (LNCS), pages 504–512. Springer, 1996.

[93] J. D. Knowles and D. W. Corne. Approximating the nondominated front using the
pareto archived evolution strategy. Evolutionary Computation, 8(2):149–172, 2000.

[94] J. Krallmann, U. Schwiegelshohn, and R. Yahyapour. On the design and evaluation of
job scheduling systems. In D. G. Feitelson and L. Rudolph, editors, Proceedings of Job
Scheduling Strategies for Parallel Processing (JSSPP99), volume 1659 of Lecture Notes
in Computer Science (LNCS). Springer, 1999.

[95] F. Kursawe. A variant of evolution strategies for vector optimization. In H.-P. Schwefel
and R. Männer, editors, Proceedings of the International Conference on Parallel Problem
Solving from Nature (PPSN90), Dortmund, pages 193–197. Springer, 1991.

[96] M. Laumanns. Analysis and Application of Evolutionary Multiobjective Optimization
Algorithms. PhD thesis, Swiss Federal Institute of Technology Zürich, 2003.

[97] M. Laumanns, G. Rudolph, and H.-P. Schwefel. A spatial predator-prey approach
to multi-objective optimization. In A. E. Eiben, T. Bäck, M. Schoenauer, and H.-P.
Schwefel, editors, Proceedings of the 5th International Conference on Parallel Problem
Solving from Nature (PPSN98), Amsterdam, pages 241–249. Springer, 1998.

[98] C. B. Lee, Y. Schwartzman, J. Hardy, and A. Snavely. Are user runtime estimates in-
herently inaccurate? In Proceedings of Job Scheduling Strategies for Parallel Processing
(JSSPP05), volume 3277 of Lecture Notes in Computer Science (LNCS), pages 253–263.
Springer, April 2005.

[99] D. A. Lifka. The ANL/IBM SP scheduling system. In Proceedings of Job Scheduling
Strategies for Parallel Processing (JSSPP95), volume 949 of Lecture Notes in Computer
Science (LNCS), pages 295–303. Springer, 1995.

[100] M. Litzkow, M. Livny, and M. Mutka. Condor - a hunter of idle workstations. In Proceed-
ings of the 8th International Conference on Distributed Computing Systems (ICDCS88),
pages 104–111, 1988.

[101] M. Livny and R. Raman. High-throughput resource management. In I. Foster and
C. Kesselman, editors, The Grid - Blueprint for a New Computing Infrastructure, pages
311–337. Morgan Kaufmann, 1999.



BIBLIOGRAPHY 175

[102] V. Lo, J. Mache, and K. Windisch. A comparative study of real workload traces and
synthetic workload models for parallel job scheduling. In D. G. Feitelson and L. Rudolph,
editors, Proceedings of Job Scheduling Strategies for Parallel Processing (JSSPP98),
volume 1459 of Lecture Notes in Computer Science (LNCS), pages 25–46. Springer,
1998.

[103] U. Lublin and D. G. Feitelson. The workload on parallel supercomputers: Model-
ing the characteristics of rigid jobs. Journal of Parallel and Distributed Computing,
63(11):1105–1122, November 2003.

[104] T. W. Malone, R. E. Fikes, K. R. Grant, and M. T. Howard. Enterprise: A market-like
task scheduler for distributed computing environments. In The Ecology of Computation,
volume 2 of Studies in Computer Science and Artifical Intelligence, pages 177–255.
North Holland, 1988.

[105] D. McLaughlin, S. Sardesai, and P. Dasgupta. Preemptive scheduling for distributed
systems. In Proceedings of the 11th International Conference on Parallel and Distributed
Computing Systems, September 1998.

[106] R. McNaughton. Scheduling with deadlines and loss functions. Management Science,
6(1):1–12, October 1959.

[107] C. A. Micchelli. Interpolation of scattered data: Distance matrices and conditionally
positive definite functions. Constructive Approximation, 2:11–22, 1986.

[108] K. M. Miettinen. Nonlinear Multiobjective Optimization. International Series in Oper-
ations Research & Management Science. Kluwer, 1999.

[109] D. Montana. Introduction to the special issue: Evolutionary algorithms for scheduling.
Evolutionary Computation, 6(1):5–9, 1998.

[110] R. Motwani, S. Phillips, and E. Torng. Nonclairvoyant scheduling. Theoretical of Com-
puter Science, 130(1):17–47, 1994.

[111] A. W. Mu’alem and D. G. Feitelson. Utilization, predictability, workloads, and user
runtime estimates in scheduling the IBM SP2 with backfilling. IEEE Transaction on
Parallel & Distributed Systems, 12(6):529–543, June 2001.

[112] A. W. Mu’alem and D. G. Feitelson. Bicriteria scheduling for parallel jobs. In Multidis-
ciplinary International Conference on Scheduling: Theory & Applications (MISTA03),
volume 2, pages 606–619, Nottingham, August 2003. Springer.

[113] T. Murata and H. Ishibuchi. Multi-objective genetic algorithms (moga95). In Pro-
ceedings of the 2th IEEE Conference on Evolutionary Computation (ICEC95), pages
289–294. IEEE Service Center, November 1995.

[114] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. Wiley,
1988.

[115] E. Nowicki and C. Smutnicki. A fast taboo search algorithm for the job shop problem.
Management Science, 42:797–813, 1996.



176 BIBLIOGRAPHY

[116] W. P. M. Nuijten and E. H. L. Aarts. A computational study of constraint satisfaction
for multiple capacitated job shop scheduling. European Journal of Operational Research,
90(2):269–284, 1996.

[117] A. Osyczka. Evolutionary Algorithms for Single and Multicriteria Design Optimization,
volume 79 of Studies in Fuzziness and Soft Computing. Physica-Verlag, 2002.

[118] A. Osyczka and S. Kundu. A new method to solve generalized multicriteria optimization
problems using the simple genetic algorithm. Structural Optimization, 10(2):94–99,
1999.

[119] P. S. Ow and T. E. Morton. Filtered beam search in scheduling. International Journal
of Production Research, 26:297–307, 1988.

[120] L. Panait, R.-P. Wiegand, and S. Luke. A sensitivity analysis of a cooperative coevolu-
tionary algorithm biased for optimization. In K. Deb and R. Poli et al., editors, Genetic
and Evolutionary Computation Conference (GECCO04), volume 3102 of Lecture Notes
in Computer Science (LNCS), pages 573–584. Springer, 2004.

[121] J. Paredis. Coevolutionary computation. Artificial Life, 2(4):355–375, 1995.

[122] C. Peterson and B. Söderberg. Local Search in Combinatorial Optimization, chapter
Artifical neural Networks, pages 173–213. Wiley, 1997.

[123] M. Pinedo. Scheduling: Theory, Algorithms, and Systems. Prentice-Hall, 2nd edition,
2002.

[124] M. A. Potter and K. De Jong. A cooperative coevolutionary approach to function
optimization. In Y. Davidor, H.-P. Schwefel, and R. Männer, editors, Proceedings of
the 3rd International Conference on Parallel Problem Solving from Nature (PPSN94),
volume 866 of Lecture Notes in Computer Science (LNCS), pages 249–257. Springer,
1994.

[125] I. Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien
der biologischen Evolution. PhD thesis, TU Berlin, 1971.

[126] I. Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien
der biologischen Evolution. Frommann-Holzbook, Stuttgart, 1973.

[127] I. Rechenberg. Evolutionsstrategie ’94. Frommann-Holzboog, Stuttgart, 1994.

[128] C. R. Reeves and T. Yamada. Genetic algorithms, path relinking and the flowshop
sequencing problem. Evolutionary Computation, 6(1):45–60, 1998.

[129] G. Rudolph. An evolutionary algorithm for integer programming. In Y. Davidor, H.-P.
Schwefel, and R. Männer, editors, Proceedings of the 3rd International Conference on
Parallel Problem Solving from Nature (PPSN00), pages 139–148, Berlin, 1994. Springer.

[130] G. Rudolph. Evolutionary search under partially ordered fitness sets. In M. F. Sebaaly,
editor, Proceedings of the International Symposium on Information Science Innovations
in Engineering of Natural and Artificial Intelligent Systems (ISI01), pages 818–822,
Millet, Kanada, 2001. ICSC Academic Press.



BIBLIOGRAPHY 177

[131] R. Schaback. Improved error bounds for scattered data interpolation by radial basis
functions. Mathematics of Computation, 68(225):201–216, January 1999.

[132] J. D. Schaffer. Some Experiments in Machine Learning Using Vector Evaluated Genetic
Algorithms. PhD thesis, Vanderbilt University, Nashville, TN, 1984.

[133] J. M. Schopf. Grid Resource Management - State of the Art and Future Trends, chapter
Ten Actions When Grid Scheduling - The User as a Grid Scheduler, pages 15–23. Kluwer
Academic Publishers, 2003.

[134] H.-P. Schwefel. Evolutionsstrategie und Numerische Optimierung. PhD thesis, TU
Berlin, 1975.

[135] H.-P. Schwefel. Numerical Optimization of Computer Models. John Wiley & Sons,
Chichester, 1981.

[136] H.-P. Schwefel. Evolution and Optimum Seeking. John Wiley & Sons, New York, 1995.

[137] H.-P. Schwefel and G. Rudolph. Contemporary evolution strategies. In F. Morán,
A. Moreno, J. J. Merelo, and P. Chacón, editors, Advances in Artificial Life - Proceedings
of the 3rd European Conference on Artificial Life (ECAL95), pages 893–907, Berlin,
1995. Springer.

[138] U. Schwiegelshohn and R. Yahyapour. Improving first-come-first-serve job scheduling
by gang scheduling. In D. G. Feitelson and L. Rudolph, editors, Proceedings of Job
Scheduling Strategies for Parallel Processing (JSSPP98), volume 1459 of Lecture Notes
in Computer Science (LNCS), pages 180–198. Springer, March 1998.

[139] U. Schwiegelshohn and R. Yahyapour. Fairness in parallel job scheduling. Journal of
Scheduling, 3(5):297–320, 2000.

[140] U. Schwiegelshohn and R. Yahyapour. Grid Resource Management - State of the Art
and Future Trends, chapter Attributes for Communication Between Grid Scheduling
Instances, pages 41–52. Kluwer Academic Publishers, 2003.

[141] D. Shepard. A two-dimensional interpolation function for irregularly-spaced data. In
Proceedings of the 23rd ACM National Conference, pages 517–524, New York, USA,
1968. ACM Press.

[142] D. B. Shmoys, C. Stein, and J. Wein. Improved approximation algorithms for shop
scheduling problems. SIAM Journal on Computing, 23(3):617–632, June 1994.

[143] D. B. Shmoys, J. Wein, and D. Williamson. Scheduling parallel machines on-line. SIAM
Journal on Computing, 24(6):1313–1331, December 1995.

[144] J. Skovira, W. Chan, H. Zhou, and D. Lifka. The EASY – LoadLeveler API project.
In Proceedings of Job Scheduling Strategies for Parallel Processing (JSSPP96), volume
1162 of Lecture Notes in Computer Science (LNCS), pages 41–47. Springer, 1996.

[145] S. F. Smith. A Learning System Based on Genetic Adaptive Algorithms. PhD thesis,
Department of Computer Science, University of Pittsburgh, 1980.



178 BIBLIOGRAPHY

[146] B. Song, C. Ernemann, and R. Yahyapour. Modeling of parameters in supercom-
puter workloads. In Proceedings of the Workshop on Parallel Systems and Algorithms
(PASA04) in conjunction with (ARCS04): Organic and Pervasive Computing, volume
P-41 of Lecture Notes in Informatics, pages 400–409. Gesellschaft für Informatik, March
2004.

[147] B. Song, C. Ernemann, and R. Yahyapour. Parallel computer workload modeling with
Markov chains. In Proceedings of Job Scheduling Strategies for Parallel Processing
(JSSPP04), Lecture Notes in Computer Science (LNCS). Springer, 2005.

[148] B. Song, C. Ernemann, and R. Yahyapour. User group-based workload analysis and
modeling. In Proceedings of Cluster Computing and Grid (CCGRID05). IEEE Press,
2005. CD-ROM.

[149] H. Späth. The Cluster Dissection and Analysis: Theory,FORTRAN Programs, Exam-
ples. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1985.

[150] N. Srinivas and K. Deb. Multiobjective optimization using nondominated sorting genetic
algorithms. Evolutionary Computation, 2(3):221–248, 1994.

[151] D. Srinivasan and A. Tettamanzi. A heuristics-guided evolutionary approach to multi-
objective generation scheduling. IEEE Proceedings on Generation, Transmission and
Distribution, 143(6):553–559, 1996.

[152] C. Stein and J. Wein. On the existence of schedules that are near-optimal for both
makespan and total weighted completion time. Operations Research Letters, 21:115–
122, 1997.

[153] T. Takagi and M. Sugeno. Fuzzy Identification of Systems and Its Applications to
Modeling and Control. IEEE Transactions on Systems, Man, and Cybernetics, SMC-
15(1):116–132, 1985.

[154] D. Talby and D. G. Feitelson. Supporting Priorities and Improving Utilization of the
IBM SP Scheduler Using Slack-Based Backfilling. In Proceedings of the 13th Interna-
tional Parallel Processing Symposium and 10th Symposium on Parallel and Distributed
Processing, pages 513–517. IEEE Computer Society, 1999.

[155] H. Tamaki, E. Nishino, and S. Abe. A genetic algorithm approach to multi-objective
scheduling problems with earliness and tardiness penalties. In Proceedings of the 1999
Congress on Evolutionary Computation, pages 46–52. IEEE, 1999.

[156] V. T’kindt and J.-C. Billaut. Multicriteria Scheduling: Theory, Models and Algorithms.
Springer, 2002.

[157] J. J. Turek, W. Ludwig, J. L. Wolf, L. Fleischer, P. Tiwari, J. Glasgow,
U. Schwiegelshohn, and P. S. Yu. Scheduling parallelizable tasks to minimize aver-
age response times. In Proceedings of the 6th annual ACM Symposium on Parallel
Algorithms and Architectures (SPAA94), pages 200–209. ACM Press, New York, USA,
June 1994.



BIBLIOGRAPHY 179

[158] P. H. Vance, C. Barnhart, E. L. Johnson, and G. L. Nemhauser. Airline crew scheduling:
A new formulation and decomposition algorithm. Operations Research, 45:188–200,
1997.

[159] P. H. Vance, C. Barnhart, E. L. Johnson, and G. L. Nemhauser. Handbook of Trans-
portation Science, volume 23 of International Series in Operations Research and Ma-
nagement Science, chapter Airline Crew Scheduling, pages 493–521. Kluwer Academic
Publishers, Norwell, MA, 1999.

[160] D. V. Veldhuizen and G. B. Lamont. Multiobjective evolutionary algorithms: Analyzing
the state-of-the-art. Evolutionary Computation, 8(2):125–148, 2000.

[161] C. A. Waldspurger, T. Hogg, B. Huberman, J. O. Kephart, and W. S. Stornetta. Spawn:
A distributed computational economy. IEEE Transactions on Software Engineering,
18(2):103–117, 1992.

[162] W. E. Walsh, M. P. Wellman, P. R. Wurman, and J. K. MacKie-Mason. Some economics
of market-based distributed scheduling. In Proceedings of the 18th International Con-
ference on Distributed Computing Systems (ICDCS98), pages 612–621. IEEE Computer
Society, 1998.

[163] S. Webster. A priority rule for minimizing weighted flow time in a class of parallel
machine scheduling problems. European Journal of Operational Research, 70:327–334,
1993.

[164] K. Windisch, V. Lo, R. Moore, D. G. Feitelson, and B. Nitzberg. A comparison of
workload traces from two production parallel machines. In 6th Symposium on Frontiers
Massively Parallel Computers, pages 319–326. IEEE Computer Society, October 1996.

[165] P. C. Wong and R. D. Bergeron. 30 years of multidimensional multivariate visualization.
In G. M. Nielson, H. Hagan, and H. Muller, editors, Scientific Visualization, Overviews,
Methodologies, and Techniques, pages 3–33. IEEE Computer Society, 1997.

[166] F. Ygge. Market-Oriented Programming and its Application to Power Load Manage-
ment. PhD thesis, Department of Computer Science, Lund University, 1998.

[167] E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective evolutionary algorithms:
Empirical results. Evolutionary Computation, 8(2):173–195, 2000.

[168] E. Zitzler and S. Künzli. Indicator-based selection in multiobjective search. In X. Yao,
E. Burke, J. A. Lozano, J. Smith, J. J. Merelo-Guervós, J. A. Bullinaria, J. Rowe,
P. Tino, A. Kabán, and H.-P. Schwefel, editors, Proceedings of the 8th International
Conference on Parallel Problem Solving from Nature (PPSN04), volume 3242 of Lecture
Notes in Computer Science (LNCS), pages 832–842. Springer, 2004.

[169] E. Zitzler, M. Laumanns, and L. Thiele. Spea2: Improving the strength pareto evolution-
ary algorithm for multiobjective optimization. In K. C. Giannakoglou, D. T. Tsahalis,
J. Périaux, K. D. Papailiou, and T. Fogarty, editors, Proceedings of the EUROGEN 200:
Evolutionary Methods for Design Optimization and Control with Applications to Indus-
trial Problems, pages 95–100, Athens, Greece, 2001. International Center for Numerical
Methods in Engineering (Cmine).



Appendix A

Scaling of Workload Traces -
Detailed Results

w
or

kl
oa

d m f

P
ol

ic
y n Cmax in

seconds

U
T

IL
in

% AWWT
in sec-
onds

AWRT
in
seconds

RC

430 ref 79285 29306750 66 13905 53442 8335013015
2.41 135157 29306750 67 13242 52897 19890060461
2.42 135358 29306750 67 13475 52979 20013239358

1024 2.43 135754 29306750 67 14267 53771 20130844161
2.45 136922 29306750 68 14480 54036 20322861231
2.46 E

A
SY

136825 29306750 68 13751 53267 20455740107
2.47 137664 29306750 69 15058 54540 20563974522
2.48 137904 29306750 69 15071 54611 20486963613

C
T

C

430 ref 79285 29306750 66 19460 58996 8335013015
2.43 135754 29306750 67 17768 57272 20130844161
2.44 136524 29306750 67 18818 58326 20291066216

1024 2.45 136922 29306750 68 19503 59058 20322861231
2.46 F

C
F
S

136825 29306750 68 18233 57749 20455740107
2.47 137664 29306750 69 19333 58815 20563974522
2.48 137904 29306750 69 19058 58598 20486963613
2.49 138547 29306750 69 19774 59291 20675400432

100 ref 28482 29363625 69 24677 75805 2024854282
10.68 166184 29363625 72 24756 75880 21649282727
10.69 165766 29363625 72 24274 75233 21668432748

1024 10.70 166323 29363625 72 24344 75549 21665961992
10.71 165396 29363625 72 24672 75826 21708443586
10.72 166443 29363625 72 24648 75775 21663836681
10.75 E

A
SY

167581 29363625 72 24190 75273 21763427500

K
T

H

10.78 170046 29363625 73 24417 75546 21829946042
10.80 168153 29363625 73 25217 76284 21871159818
10.83 168770 29363625 73 25510 76587 21904565195

100 ref 28482 29381343 69 400649 451777 2024854282
10.71 165396 29379434 72 167185 218339 21708443586

1024 10.72 F
C

F
S

166443 29380430 72 104541 155669 21663836681
Continued on next page

180



181

w
or

kl
oa

d m f

P
ol

ic
y n Cmax in

seconds

U
T

IL
in

% AWWT
in sec-
onds

AWRT
in
seconds

RC

10.80 168153 29374047 73 291278 342345 21871159818
10.85 167431 29366917 73 295568 346661 21968343948
10.88 167681 29381624 73 404008 455149 22016195800
10.89 167991 29366517 73 424255 475405 22051851208

1024 10.90 169405 29378230 73 281495 332646 22080508136

K
T

H

10.92 F
C

F
S

168894 29371367 74 415358 466515 22127579593
10.96 169370 29381584 74 539856 590999 22204787743
10.99 170417 29380278 74 491738 542886 22263296356

128 ref 42049 7945421 47 6 9482 474928903
8.00 188706 7945421 47 2 9478 3799431224
8.01 188659 7945421 47 436 9910 3805309069
8.04 189104 7945421 47 370 9850 3813901379

1024 8.05 190463 7945421 47 466 9952 3815152286
8.06 190221 7945421 47 527 10001 3825085688
8.07 E

A
SY

190897 7945421 47 380 9847 3829707646
8.08 191454 7945421 47 483 9967 3829000061
8.09 190514 7945507 47 736 10220 3838797287
8.10 190580 7945421 47 243 9730 3835645184

N
A

SA

128 ref 42049 7945421 47 6 9482 474928903
8.00 188258 7945421 47 4 9480 3799431224
8.01 188659 7945421 47 562 10036 3805309069
8.02 189563 7945421 47 629 10126 3806198375

1024 8.03 189864 7945421 47 427 9901 3810853391
8.04 189104 7945421 47 534 10013 3813901379
8.05 F

C
F
S

190463 7945421 47 562 10048 3815152286
8.06 190221 7945421 47 721 10194 3825085688
8.07 190897 7945421 47 531 9998 3829707646
8.08 191454 7945421 47 587 10070 3829000061
8.09 190514 7945507 47 605 10088 3838797287

128 ref 67655 63192267 83 76059 116516 6749918264
8.12 308872 63209190 85 70622 111043 54813430352
8.14 309778 63189633 85 71757 112264 54908840905
8.15 310917 63195547 85 78663 119080 55003341172
8.16 310209 63189633 85 76235 116714 55030054463
8.18 E

A
SY

310513 63189633 85 74827 115312 55206637895
8.19 310286 63247375 85 77472 118119 55258239565
8.20 311976 63194139 86 78585 119254 55368328613
8.21 312219 63204664 86 75787 116408 55369411171

1024 8.22 313024 63200276 86 75811 116267 55499902234
128 ref 67655 68623991 77 2182091 2222548 6749918264

8.55 321966 68877042 82 2133228 2173666 57703096198
8.56 323298 69093787 82 2154991 2195442 57785593002

1024 8.58 323903 69074629 82 2180614 2221139 58020939264

SD
SC

00

8.59 F
C

F
S

323908 69499787 82 2346320 2386846 57999342465
8.60 325858 69428033 82 2338591 2379182 58011833809
8.61 325467 69146937 82 2248848 2289373 58074546998
8.63 325458 69258234 82 2219200 2259628 58211844138

Continued on next page



182 APPENDIX A. SCALING OF WORKLOAD TRACES - DETAILED RESULTS

w
or

kl
oa

d m f

P
ol

ic
y n Cmax in

seconds

U
T

IL
in

% AWWT
in sec-
onds

AWRT
in
seconds

RC

416 ref 75730 31662080 63 13723 46907 8284847126
2.46 130380 31662080 63 13287 46492 20351822499
2.47 131399 31662080 63 13144 46288 20464087105
2.48 131884 31662080 63 13840 46985 20534988559

1024 2.49 131730 31662080 64 13957 47245 20722722130
2.50 E

A
SY

132536 31662080 64 14409 47682 20734539617
2.52 133289 31662080 64 14432 47628 20794582470

SD
SC

95

416 ref 75730 31662080 63 17474 50658 8284847126
2.48 131884 31662080 63 17327 50472 20534988559
2.49 131730 31662080 64 17053 50341 20722722130
2.50 132536 31662080 64 17624 50896 20734539617
2.52 F

C
F
S

133289 31662080 64 17676 50872 20794582470
2.53 133924 31662080 65 17639 50820 20955732920

416 ref 37910 31842431 62 9134 48732 8163457982
2.46 65498 31842431 62 9055 48736 20026074751
2.48 66007 31842431 62 8799 48357 20184805564

1024 2.50 66457 31842431 63 9386 49134 20353508244
2.51 E

A
SY

66497 31842431 63 9874 49315 20502723327
2.52 66653 31842431 63 9419 48715 20629070916

SD
SC

96

416 ref 37910 31842431 62 10594 50192 8163457982
2.47 65842 31842431 62 9674 49361 20120648801
2.48 66007 31842431 62 10008 49566 20184805564
2.49 66274 31842431 63 11312 51211 20374472890

1024 2.50 F
C

F
S

66457 31842431 63 11321 51069 20353508244
2.52 66653 31842431 63 11089 50386 20629070916

Table A.1: All Results for Increased Scaling Factors with d = 50.



Appendix B

Complete CTC Pareto Front

0,0E+00

5,0E+06

1,0E+07

1,5E+07

2,0E+07

2,5E+07

3,0E+07

3,5E+07

0,0E+00 5,0E+06 1,0E+07 1,5E+07 2,0E+07 2,5E+07

Average Weighted Response Time in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
1

in
s

(a) AWRT vs. AWRT1.

0,0E+00

5,0E+06

1,0E+07

1,5E+07

2,0E+07

2,5E+07

3,0E+07

3,5E+07

0,0E+00 5,0E+06 1,0E+07 1,5E+07 2,0E+07 2,5E+07

Average Weighted Response Time in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
2

in
s

(b) AWRT vs. AWRT2.

0,0E+00

5,0E+06

1,0E+07

1,5E+07

2,0E+07

2,5E+07

3,0E+07

3,5E+07

0,0E+00 5,0E+06 1,0E+07 1,5E+07 2,0E+07 2,5E+07

Average Weighted Response Time in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
3

in
s

(c) AWRT vs. AWRT3.

0,0E+00

5,0E+06

1,0E+07

1,5E+07

2,0E+07

2,5E+07

3,0E+07

3,5E+07

0,0E+00 5,0E+06 1,0E+07 1,5E+07 2,0E+07 2,5E+07

Average Weighted Response Time in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
4

in
s

(d) AWRT vs. AWRT4.

183



184 APPENDIX B. COMPLETE CTC PARETO FRONT

0,0E+00

5,0E+06

1,0E+07

1,5E+07

2,0E+07

2,5E+07

3,0E+07

3,5E+07

0,0E+00 5,0E+06 1,0E+07 1,5E+07 2,0E+07 2,5E+07

Average Weighted Response Time in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
5

in
s

(e) AWRT vs. AWRT5.

0

10

20

30

40

50

60

70

80

0,0E+00 5,0E+06 1,0E+07 1,5E+07 2,0E+07 2,5E+07

Average Weighted Response Time in s

U
ti

li
z
a
ti

o
n

in
%

(f) AWRT vs. UTIL.

0,0E+00

5,0E+06

1,0E+07

1,5E+07

2,0E+07

2,5E+07

3,0E+07

3,5E+07

0,0E+00 5,0E+06 1,0E+07 1,5E+07 2,0E+07 2,5E+07 3,0E+07 3,5E+07

Average Weighted Response Time 1 in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
2

in
s

(g) AWRT1 vs. AWRT2.

0,0E+00

5,0E+06

1,0E+07

1,5E+07

2,0E+07

2,5E+07

3,0E+07

3,5E+07

0,0E+00 5,0E+06 1,0E+07 1,5E+07 2,0E+07 2,5E+07 3,0E+07 3,5E+07

Average Weighted Response Time 1 in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
3

in
s

(h) AWRT1 vs. AWRT3.

0,0E+00

5,0E+06

1,0E+07

1,5E+07

2,0E+07

2,5E+07

3,0E+07

3,5E+07

0,0E+00 5,0E+06 1,0E+07 1,5E+07 2,0E+07 2,5E+07 3,0E+07 3,5E+07

Average Weighted Response Time 1 in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
4

in
s

(i) AWRT1 vs. AWRT4.

0,0E+00

5,0E+06

1,0E+07

1,5E+07

2,0E+07

2,5E+07

3,0E+07

3,5E+07

0,0E+00 5,0E+06 1,0E+07 1,5E+07 2,0E+07 2,5E+07 3,0E+07 3,5E+07

Average Weighted Response Time 1 in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
5

in
s

(j) AWRT1 vs. AWRT5.

0

10

20

30

40

50

60

70

80

0,0E+00 5,0E+06 1,0E+07 1,5E+07 2,0E+07 2,5E+07 3,0E+07 3,5E+07

Average Weighted Response Time 1 in s

U
ti

li
z
a
ti

o
n

in
%

(k) AWRT1 vs. UTIL.

0,0E+00

5,0E+06

1,0E+07

1,5E+07

2,0E+07

2,5E+07

3,0E+07

3,5E+07

0,0E+00 5,0E+06 1,0E+07 1,5E+07 2,0E+07 2,5E+07 3,0E+07 3,5E+07

Average Weighted Response Time 2 in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
3

in
s

(l) AWRT2 vs. AWRT3.



185

0,0E+00

5,0E+06

1,0E+07

1,5E+07

2,0E+07

2,5E+07

3,0E+07

3,5E+07

0,0E+00 5,0E+06 1,0E+07 1,5E+07 2,0E+07 2,5E+07 3,0E+07 3,5E+07

Average Weighted Response Time 2 in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
4

in
s

(m) AWRT2 vs. AWRT4.

0,0E+00

5,0E+06

1,0E+07

1,5E+07

2,0E+07

2,5E+07

3,0E+07

3,5E+07

0,0E+00 5,0E+06 1,0E+07 1,5E+07 2,0E+07 2,5E+07 3,0E+07 3,5E+07

Average Weighted Response Time 2 in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
5

in
s

(n) AWRT2 vs. AWRT5.

0

10

20

30

40

50

60

70

80

0,0E+00 5,0E+06 1,0E+07 1,5E+07 2,0E+07 2,5E+07 3,0E+07 3,5E+07

Average Weighted Response Time 2 in s

U
ti

li
z
a
ti

o
n

in
%

(o) AWRT2 vs. UTIL.

0,0E+00

5,0E+06

1,0E+07

1,5E+07

2,0E+07

2,5E+07

3,0E+07

3,5E+07

0,0E+00 5,0E+06 1,0E+07 1,5E+07 2,0E+07 2,5E+07 3,0E+07 3,5E+07

Average Weighted Response Time 3 in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
4

in
s

(p) AWRT3 vs. AWRT4.

0,0E+00

5,0E+06

1,0E+07

1,5E+07

2,0E+07

2,5E+07

3,0E+07

3,5E+07

0,0E+00 5,0E+06 1,0E+07 1,5E+07 2,0E+07 2,5E+07 3,0E+07 3,5E+07

Average Weighted Response Time 3 in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
5

in
s

(q) AWRT3 vs. AWRT5.

0

10

20

30

40

50

60

70

80

0,0E+00 5,0E+06 1,0E+07 1,5E+07 2,0E+07 2,5E+07 3,0E+07 3,5E+07

Average Weighted Response Time 3 in s

U
ti

li
z
a
ti

o
n

in
%

(r) AWRT3 vs. UTIL.

0,0E+00

5,0E+06

1,0E+07

1,5E+07

2,0E+07

2,5E+07

3,0E+07

3,5E+07

0,0E+00 5,0E+06 1,0E+07 1,5E+07 2,0E+07 2,5E+07 3,0E+07 3,5E+07

Average Weighted Response Time 4 in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
5

in
s

(s) AWRT4 vs. AWRT5.

0

10

20

30

40

50

60

70

80

0,0E+00 5,0E+06 1,0E+07 1,5E+07 2,0E+07 2,5E+07 3,0E+07 3,5E+07

Average Weighted Response Time 4 in s

U
ti

li
z
a
ti

o
n

in
%

(t) AWRT4 vs. UTIL.



186 APPENDIX B. COMPLETE CTC PARETO FRONT

0

10

20

30

40

50

60

70

80

0,0E+00 5,0E+06 1,0E+07 1,5E+07 2,0E+07 2,5E+07 3,0E+07 3,5E+07

Average Weighted Response Time 5 in s

U
ti

li
z
a
ti

o
n

in
%

(u) AWRT5 vs. UTIL.



Appendix C

Complete Pareto Front After
Transformation using all Workloads

-5,0E+06

0,0E+00

5,0E+06

1,0E+07

1,5E+07

2,0E+07

2,5E+07

3,0E+07

3,5E+07

4,0E+07

-5,0E+06 0,0E+00 5,0E+06 1,0E+07 1,5E+07 2,0E+07 2,5E+07 3,0E+07

Average Weighted Response Time in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
1

in
s

(a) AWRT vs. AWRT1.

0,0E+00

5,0E+06

1,0E+07

1,5E+07

2,0E+07

2,5E+07

3,0E+07

3,5E+07

4,0E+07

-5,0E+06 0,0E+00 5,0E+06 1,0E+07 1,5E+07 2,0E+07 2,5E+07 3,0E+07

Average Weighted Response Time in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
2

in
s

(b) AWRT vs. AWRT2.

-5,0E+06

0,0E+00

5,0E+06

1,0E+07

1,5E+07

2,0E+07

2,5E+07

3,0E+07

3,5E+07

4,0E+07

4,5E+07

-5,0E+06 0,0E+00 5,0E+06 1,0E+07 1,5E+07 2,0E+07 2,5E+07 3,0E+07

Average Weighted Response Time in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
3

in
s

(c) AWRT vs. AWRT3.

-5,0E+06

0,0E+00

5,0E+06

1,0E+07

1,5E+07

2,0E+07

2,5E+07

3,0E+07

3,5E+07

4,0E+07

4,5E+07

5,0E+07

-5,0E+06 0,0E+00 5,0E+06 1,0E+07 1,5E+07 2,0E+07 2,5E+07 3,0E+07

Average Weighted Response Time in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
4

in
s

(d) AWRT vs. AWRT4.

187



188 APPENDIX C. PARETO FRONT AFTER TRANSFORMATION

-1,E+07

0,E+00

1,E+07

2,E+07

3,E+07

4,E+07

5,E+07

6,E+07

-5,0E+06 0,0E+00 5,0E+06 1,0E+07 1,5E+07 2,0E+07 2,5E+07 3,0E+07

Average Weighted Response Time in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
5

in
s

(e) AWRT vs. AWRT5.

0

10

20

30

40

50

60

70

80

90

100

-5,0E+06 0,0E+00 5,0E+06 1,0E+07 1,5E+07 2,0E+07 2,5E+07 3,0E+07

Average Weighted Response Time in s

U
ti

li
z
a
ti

o
n

in
%

(f) AWRT vs. UTIL.

0,0E+00

5,0E+06

1,0E+07

1,5E+07

2,0E+07

2,5E+07

3,0E+07

3,5E+07

4,0E+07

-5,0E+06 0,0E+00 5,0E+06 1,0E+07 1,5E+07 2,0E+07 2,5E+07 3,0E+07 3,5E+07 4,0E+07

Average Weighted Response Time 1 in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
2

in
s

(g) AWRT1 vs. AWRT2.

-5,0E+06

0,0E+00

5,0E+06

1,0E+07

1,5E+07

2,0E+07

2,5E+07

3,0E+07

3,5E+07

4,0E+07

4,5E+07

-5,0E+06 0,0E+00 5,0E+06 1,0E+07 1,5E+07 2,0E+07 2,5E+07 3,0E+07 3,5E+07 4,0E+07

Average Weighted Response Time 1 in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
3

in
s

(h) AWRT1 vs. AWRT3.

-5,0E+06

0,0E+00

5,0E+06

1,0E+07

1,5E+07

2,0E+07

2,5E+07

3,0E+07

3,5E+07

4,0E+07

4,5E+07

5,0E+07

-5,0E+06 0,0E+00 5,0E+06 1,0E+07 1,5E+07 2,0E+07 2,5E+07 3,0E+07 3,5E+07 4,0E+07

Average Weighted Response Time 1 in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
4

in
s

(i) AWRT1 vs. AWRT4.

-1,E+07

0,E+00

1,E+07

2,E+07

3,E+07

4,E+07

5,E+07

6,E+07

-5,0E+06 0,0E+00 5,0E+06 1,0E+07 1,5E+07 2,0E+07 2,5E+07 3,0E+07 3,5E+07 4,0E+07

Average Weighted Response Time 1 in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
5

in
s

(j) AWRT1 vs. AWRT5.

0

10

20

30

40

50

60

70

80

90

100

-5,0E+06 0,0E+00 5,0E+06 1,0E+07 1,5E+07 2,0E+07 2,5E+07 3,0E+07 3,5E+07 4,0E+07

Average Weighted Response Time 1 in s

U
ti

li
z
a
ti

o
n

in
%

(k) AWRT1 vs. UTIL.

-5,0E+06

0,0E+00

5,0E+06

1,0E+07

1,5E+07

2,0E+07

2,5E+07

3,0E+07

3,5E+07

4,0E+07

4,5E+07

0,0E+00 5,0E+06 1,0E+07 1,5E+07 2,0E+07 2,5E+07 3,0E+07 3,5E+07 4,0E+07

Average Weighted Response Time 2 in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
3

in
s

(l) AWRT2 vs. AWRT3.



189

-5,0E+06

0,0E+00

5,0E+06

1,0E+07

1,5E+07

2,0E+07

2,5E+07

3,0E+07

3,5E+07

4,0E+07

4,5E+07

5,0E+07

0,0E+00 5,0E+06 1,0E+07 1,5E+07 2,0E+07 2,5E+07 3,0E+07 3,5E+07 4,0E+07

Average Weighted Response Time 2 in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
4

in
s

(m) AWRT2 vs. AWRT4.

-1,E+07

0,E+00

1,E+07

2,E+07

3,E+07

4,E+07

5,E+07

6,E+07

0,0E+00 5,0E+06 1,0E+07 1,5E+07 2,0E+07 2,5E+07 3,0E+07 3,5E+07 4,0E+07

Average Weighted Response Time 2 in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
5

in
s

(n) AWRT2 vs. AWRT5.

0

10

20

30

40

50

60

70

80

90

100

0,0E+00 5,0E+06 1,0E+07 1,5E+07 2,0E+07 2,5E+07 3,0E+07 3,5E+07 4,0E+07

Average Weighted Response Time 2 in s

U
ti

li
z
a
ti

o
n

in
%

(o) AWRT2 vs. UTIL.

-5,0E+06

0,0E+00

5,0E+06

1,0E+07

1,5E+07

2,0E+07

2,5E+07

3,0E+07

3,5E+07

4,0E+07

4,5E+07

5,0E+07

-5,0E+0

6

0,0E+00 5,0E+06 1,0E+07 1,5E+07 2,0E+07 2,5E+07 3,0E+07 3,5E+07 4,0E+07 4,5E+07

Average Weighted Response Time 3 in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
4

in
s

(p) AWRT3 vs. AWRT4.

-1,E+07

0,E+00

1,E+07

2,E+07

3,E+07

4,E+07

5,E+07

6,E+07

-5,0E+0

6

0,0E+00 5,0E+06 1,0E+07 1,5E+07 2,0E+07 2,5E+07 3,0E+07 3,5E+07 4,0E+07 4,5E+07

Average Weighted Response Time 3 in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
5

in
s

(q) AWRT3 vs. AWRT5.

0

10

20

30

40

50

60

70

80

90

100

-5,0E+06 0,0E+00 5,0E+06 1,0E+07 1,5E+07 2,0E+07 2,5E+07 3,0E+07 3,5E+07 4,0E+07 4,5E+07

Average Weighted Response Time 3 in s

U
ti

li
z
a
ti

o
n

in
%

(r) AWRT3 vs. UTIL.

-1,E+07

0,E+00

1,E+07

2,E+07

3,E+07

4,E+07

5,E+07

6,E+07

-5,0E+06 0,0E+00 5,0E+06 1,0E+07 1,5E+07 2,0E+07 2,5E+07 3,0E+07 3,5E+07 4,0E+07 4,5E+07 5,0E+07

Average Weighted Response Time 4 in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
5

in
s

(s) AWRT4 vs. AWRT5.

0

10

20

30

40

50

60

70

80

90

100

-5,0E+06 0,0E+00 5,0E+06 1,0E+07 1,5E+07 2,0E+07 2,5E+07 3,0E+07 3,5E+07 4,0E+07 4,5E+07 5,0E+07

Average Weighted Response Time 4 in s

U
ti

li
z
a
ti

o
n

in
%

(t) AWRT4 vs. UTIL.



190 APPENDIX C. PARETO FRONT AFTER TRANSFORMATION

0

10

20

30

40

50

60

70

80

90

100

-1,E+07 0,E+00 1,E+07 2,E+07 3,E+07 4,E+07 5,E+07 6,E+07

Average Weighted Response Time 5 in s

U
ti

li
z
a
ti

o
n

in
%

(u) AWRT5 vs. UTIL.



Appendix D

Reduced Pareto Front for the CTC
Workload and Results for Standard
Algorithms

4,5E+04

5,0E+04

5,5E+04

6,0E+04

6,5E+04

7,0E+04

7,5E+04

8,0E+04

8,5E+04

9,0E+04

9,5E+04

4,5E+04 5,0E+04 5,5E+04 6,0E+04 6,5E+04 7,0E+04 7,5E+04

Average Weighted Response Time in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
1

in
s

Pareto Front

CONS

EASY

FCFS

(a) AWRT vs. AWRT1.

4,5E+04

5,5E+04

6,5E+04

7,5E+04

8,5E+04

9,5E+04

1,1E+05

4,5E+04 5,0E+04 5,5E+04 6,0E+04 6,5E+04 7,0E+04 7,5E+04

Average Weighted Response Time in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
2

in
s

Pareto Front

CONS

EASY

FCFS

(b) AWRT vs. AWRT2.

4,0E+04

4,5E+04

5,0E+04

5,5E+04

6,0E+04

6,5E+04

7,0E+04

7,5E+04

8,0E+04

8,5E+04

5,0E+04 5,5E+04 6,0E+04 6,5E+04 7,0E+04 7,5E+04

Average Weighted Response Time in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
3

in
s

Pareto Front

CONS

EASY

FCFS

(c) AWRT vs. AWRT3.

3,5E+04

4,0E+04

4,5E+04

5,0E+04

5,5E+04

6,0E+04

6,5E+04

7,0E+04

7,5E+04

4,5E+04 5,0E+04 5,5E+04 6,0E+04 6,5E+04 7,0E+04 7,5E+04

Average Weighted Response Time in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
4

in
s

Pareto Front

CONS

EASY

FCFS

(d) AWRT vs. AWRT4.

191



192 APPENDIX D. REDUCED PARETO FRONT CTC

2,E+04

3,E+04

4,E+04

5,E+04

6,E+04

7,E+04

8,E+04

9,E+04

4,5E+04 5,0E+04 5,5E+04 6,0E+04 6,5E+04 7,0E+04 7,5E+04

Average Weighted Response Time in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
5

in
s

Pareto Front

CONS

EASY

FCFS

(e) AWRT vs. AWRT5.

66,92

66,94

66,96

66,98

67

67,02

67,04

67,06

67,08

67,1

67,12

67,14

4,5E+04 5,0E+04 5,5E+04 6,0E+04 6,5E+04 7,0E+04 7,5E+04

Average Weighted Response Time in s

U
ti

li
z
a
ti

o
n

in
%

Pareto Front

CONS

EASY

FCFS

(f) AWRT vs. UTIL.

4,5E+04

5,5E+04

6,5E+04

7,5E+04

8,5E+04

9,5E+04

1,1E+05

4,5E+04 5,5E+04 6,5E+04 7,5E+04 8,5E+04 9,5E+04

Average Weighted Response Time 1 in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
2

in
s

Pareto Front

CONS

EASY

FCFS

(g) AWRT1 vs. AWRT2.

4,0E+04

4,5E+04

5,0E+04

5,5E+04

6,0E+04

6,5E+04

7,0E+04

7,5E+04

8,0E+04

8,5E+04

4,0E+04 5,0E+04 6,0E+04 7,0E+04 8,0E+04 9,0E+04 1,0E+05

Average Weighted Response Time 1 in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
3

in
s

Pareto Front

CONS

EASY

FCFS

(h) AWRT1 vs. AWRT3.

3,0E+04

3,5E+04

4,0E+04

4,5E+04

5,0E+04

5,5E+04

6,0E+04

6,5E+04

7,0E+04

7,5E+04

4,E+04 5,E+04 6,E+04 7,E+04 8,E+04 9,E+04 1,E+05

Average Weighted Response Time 1 in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
4

in
s

Pareto Front

CONS

EASY

FCFS

(i) AWRT1 vs. AWRT4.

2,E+04

3,E+04

4,E+04

5,E+04

6,E+04

7,E+04

8,E+04

9,E+04

4,E+04 5,E+04 6,E+04 7,E+04 8,E+04 9,E+04 1,E+05

Average Weighted Response Time 1 in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
5

in
s

Pareto Front

CONS

EASY

FCFS

(j) AWRT1 vs. AWRT5.

66,92

66,94

66,96

66,98

67

67,02

67,04

67,06

67,08

67,1

67,12

67,14

4,E+04 5,E+04 6,E+04 7,E+04 8,E+04 9,E+04 1,E+05

Average Weighted Response Time 1 in s

U
ti

li
z
a
ti

o
n

in
%

Pareto Front

CONS

EASY

FCFS

(k) AWRT1 vs. UTIL.

3,5E+04

4,0E+04

4,5E+04

5,0E+04

5,5E+04

6,0E+04

6,5E+04

7,0E+04

7,5E+04

8,0E+04

8,5E+04

4,E+04 5,E+04 6,E+04 7,E+04 8,E+04 9,E+04 1,E+05

Average Weighted Response Time 2 in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
3

in
s

Pareto Front

CONS

EASY

FCFS

(l) AWRT2 vs. AWRT3.



193

3,0E+04

3,5E+04

4,0E+04

4,5E+04

5,0E+04

5,5E+04

6,0E+04

6,5E+04

7,0E+04

7,5E+04

4,E+04 5,E+04 6,E+04 7,E+04 8,E+04 9,E+04 1,E+05

Average Weighted Response Time 2 in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
4

in
s

Pareto Front

CONS

EASY

FCFS

(m) AWRT2 vs. AWRT4.

2,E+04

3,E+04

4,E+04

5,E+04

6,E+04

7,E+04

8,E+04

9,E+04

5,E+04 6,E+04 7,E+04 8,E+04 9,E+04 1,E+05

Average Weighted Response Time 2 in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
5

in
s

Pareto Front

CONS

EASY

FCFFS

(n) AWRT2 vs. AWRT5.

66,92

66,94

66,96

66,98

67

67,02

67,04

67,06

67,08

67,1

67,12

67,14

4,E+04 5,E+04 6,E+04 7,E+04 8,E+04 9,E+04 1,E+05

Average Weighted Response Time 2 in s

U
ti

li
z
a
ti

o
n

in
%

Pareto Front

CONS

EASY

FCFS

(o) AWRT2 vs. UTIL.

3,5E+04

4,0E+04

4,5E+04

5,0E+04

5,5E+04

6,0E+04

6,5E+04

7,0E+04

7,5E+04

3,5E+04 4,5E+04 5,5E+04 6,5E+04 7,5E+04 8,5E+04

Average Weighted Response Time 3 in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
4

in
s

Pareto Front

CONS

EASY

FCFS

(p) AWRT3 vs. AWRT4.

2,0E+04

3,0E+04

4,0E+04

5,0E+04

6,0E+04

7,0E+04

8,0E+04

9,0E+04

3,5E+04 4,5E+04 5,5E+04 6,5E+04 7,5E+04 8,5E+04

Average Weighted Response Time 3 in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
5

in
s

Pareto Front

CONS

EASY

FCFS

(q) AWRT3 vs. AWRT5.

66,92

66,94

66,96

66,98

67

67,02

67,04

67,06

67,08

67,1

67,12

67,14

3,5E+04 4,5E+04 5,5E+04 6,5E+04 7,5E+04 8,5E+04

Average Weighted Response Time 3 in s

U
ti

li
z
a
ti

o
n

in
%

Pareto Front

CONS

EASY

FCFS

(r) AWRT3 vs. UTIL.

2,E+04

3,E+04

4,E+04

5,E+04

6,E+04

7,E+04

8,E+04

9,E+04

3,5E+04 4,0E+04 4,5E+04 5,0E+04 5,5E+04 6,0E+04 6,5E+04 7,0E+04 7,5E+04

Average Weighted Response Time 4 in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
5

in
s

Pareto Front

CONS

EASY

FCFS

(s) AWRT4 vs. AWRT5.

66,92

66,94

66,96

66,98

67

67,02

67,04

67,06

67,08

67,1

67,12

67,14

3,5E+04 4,0E+04 4,5E+04 5,0E+04 5,5E+04 6,0E+04 6,5E+04 7,0E+04 7,5E+04

Average Weighted Response Time 4 in s

U
ti

li
z
a
ti

o
n

in
%

Pareto Front

CONS

EASY

FCFS

(t) AWRT4 vs. UTIL.



194 APPENDIX D. REDUCED PARETO FRONT CTC

66,92

66,94

66,96

66,98

67

67,02

67,04

67,06

67,08

67,1

67,12

67,14

2,E+04 3,E+04 4,E+04 5,E+04 6,E+04 7,E+04 8,E+04 9,E+04

Average Weighted Response Time 5 in s

U
ti

li
z
a
ti

o
n

in
%

Pareto Front

CONS

EASY

FCFS

(u) AWRT5 vs. UTIL.



Appendix E

Reduced Pareto Front After
Transformation using All Workloads

-2,0E+06

0,0E+00

2,0E+06

4,0E+06

6,0E+06

8,0E+06

1,0E+07

1,2E+07

1,4E+07

1,6E+07

1,8E+07

-4,0E+05 -2,0E+05 0,0E+00 2,0E+05 4,0E+05 6,0E+05 8,0E+05 1,0E+06 1,2E+06 1,4E+06 1,6E+06

Average Weighted Response Time in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
1

in
s

(a) AWRT vs. AWRT1.

0,0E+00

5,0E+05

1,0E+06

1,5E+06

2,0E+06

2,5E+06

3,0E+06

3,5E+06

4,0E+06

-4,0E+05 -2,0E+05 0,0E+00 2,0E+05 4,0E+05 6,0E+05 8,0E+05 1,0E+06 1,2E+06 1,4E+06 1,6E+06

Average Weighted Response Time in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
2

in
s

(b) AWRT vs. AWRT2.

-1,E+06

0,E+00

1,E+06

2,E+06

3,E+06

4,E+06

5,E+06

6,E+06

-4,0E+05 -2,0E+05 0,0E+00 2,0E+05 4,0E+05 6,0E+05 8,0E+05 1,0E+06 1,2E+06 1,4E+06 1,6E+06

Average Weighted Response Time in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
3

in
s

(c) AWRT vs. AWRT3.

-2,E+06

-1,E+06

0,E+00

1,E+06

2,E+06

3,E+06

4,E+06

5,E+06

6,E+06

7,E+06

8,E+06

-4,0E+05 -2,0E+05 0,0E+00 2,0E+05 4,0E+05 6,0E+05 8,0E+05 1,0E+06 1,2E+06 1,4E+06 1,6E+06

Average Weighted Response Time in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
4

in
s

(d) AWRT vs. AWRT4.

195



196 APPENDIX E. REDUCED PARETO FRONT AFTER TRANSFORMATION

-2,0E+06

0,0E+00

2,0E+06

4,0E+06

6,0E+06

8,0E+06

1,0E+07

1,2E+07

-4,0E+05 -2,0E+05 0,0E+00 2,0E+05 4,0E+05 6,0E+05 8,0E+05 1,0E+06 1,2E+06 1,4E+06 1,6E+06

Average Weighted Response Time in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
5

in
s

(e) AWRT vs. AWRT5.

0

10

20

30

40

50

60

70

80

90

100

-4,0E+05 -2,0E+05 0,0E+00 2,0E+05 4,0E+05 6,0E+05 8,0E+05 1,0E+06 1,2E+06 1,4E+06 1,6E+06

Average Weighted Response Time in s

U
ti

li
z
a
ti

o
n

in
%

(f) AWRT vs. UTIL.

0,0E+00

5,0E+05

1,0E+06

1,5E+06

2,0E+06

2,5E+06

3,0E+06

3,5E+06

4,0E+06

-2,0E+06 0,0E+00 2,0E+06 4,0E+06 6,0E+06 8,0E+06 1,0E+07 1,2E+07 1,4E+07 1,6E+07 1,8E+07

Average Weighted Response Time 1 in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
2

in
s

(g) AWRT1 vs. AWRT2.

-1,E+06

0,E+00

1,E+06

2,E+06

3,E+06

4,E+06

5,E+06

6,E+06

-2,0E+06 0,0E+00 2,0E+06 4,0E+06 6,0E+06 8,0E+06 1,0E+07 1,2E+07 1,4E+07 1,6E+07 1,8E+07

Average Weighted Response Time 1 in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
3

in
s

(h) AWRT1 vs. AWRT3.

-2,E+06

-1,E+06

0,E+00

1,E+06

2,E+06

3,E+06

4,E+06

5,E+06

6,E+06

7,E+06

8,E+06

-2,0E+06 0,0E+00 2,0E+06 4,0E+06 6,0E+06 8,0E+06 1,0E+07 1,2E+07 1,4E+07 1,6E+07 1,8E+07

Average Weighted Response Time 1 in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
4

in
s

(i) AWRT1 vs. AWRT4.

-2,0E+06

0,0E+00

2,0E+06

4,0E+06

6,0E+06

8,0E+06

1,0E+07

1,2E+07

-2,0E+06 0,0E+00 2,0E+06 4,0E+06 6,0E+06 8,0E+06 1,0E+07 1,2E+07 1,4E+07 1,6E+07 1,8E+07

Average Weighted Response Time 1 in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
5

in
s

(j) AWRT1 vs. AWRT5.

0

10

20

30

40

50

60

70

80

90

100

-2,0E+06 0,0E+00 2,0E+06 4,0E+06 6,0E+06 8,0E+06 1,0E+07 1,2E+07 1,4E+07 1,6E+07 1,8E+07

Average Weighted Response Time 1 in s

U
ti

li
z
a
ti

o
n

in
%

(k) AWRT1 vs. UTIL.

-1,E+06

0,E+00

1,E+06

2,E+06

3,E+06

4,E+06

5,E+06

6,E+06

0,0E+00 5,0E+05 1,0E+06 1,5E+06 2,0E+06 2,5E+06 3,0E+06 3,5E+06 4,0E+06

Average Weighted Response Time 2 in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
3

in
s

(l) AWRT2 vs. AWRT3.



197

-2,E+06

-1,E+06

0,E+00

1,E+06

2,E+06

3,E+06

4,E+06

5,E+06

6,E+06

7,E+06

8,E+06

0,0E+00 5,0E+05 1,0E+06 1,5E+06 2,0E+06 2,5E+06 3,0E+06 3,5E+06 4,0E+06

Average Weighted Response Time 2 in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
4

in
s

(m) AWRT2 vs. AWRT4.

-2,0E+06

0,0E+00

2,0E+06

4,0E+06

6,0E+06

8,0E+06

1,0E+07

1,2E+07

0,0E+00 5,0E+05 1,0E+06 1,5E+06 2,0E+06 2,5E+06 3,0E+06 3,5E+06 4,0E+06

Average Weighted Response Time 2 in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
5

in
s

(n) AWRT2 vs. AWRT5.

0

10

20

30

40

50

60

70

80

90

100

0,0E+00 5,0E+05 1,0E+06 1,5E+06 2,0E+06 2,5E+06 3,0E+06 3,5E+06 4,0E+06

Average Weighted Response Time 2 in s

U
ti

li
z
a
ti

o
n

in
%

(o) AWRT2 vs. UTIL.

-2,E+06

-1,E+06

0,E+00

1,E+06

2,E+06

3,E+06

4,E+06

5,E+06

6,E+06

7,E+06

8,E+06

-1,E+06 0,E+00 1,E+06 2,E+06 3,E+06 4,E+06 5,E+06 6,E+06

Average Weighted Response Time 3 in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
4

in
s

(p) AWRT3 vs. AWRT4.

-2,00E+06

0,00E+00

2,00E+06

4,00E+06

6,00E+06

8,00E+06

1,00E+07

1,20E+07

-1,E+06 0,E+00 1,E+06 2,E+06 3,E+06 4,E+06 5,E+06 6,E+06

Average Weighted Response Time 3 in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
5

in
s

(q) AWRT3 vs. AWRT5.

0

10

20

30

40

50

60

70

80

90

100

-1,E+06 0,E+00 1,E+06 2,E+06 3,E+06 4,E+06 5,E+06 6,E+06

Average Weighted Response Time 3 in s

U
ti

li
z
a
ti

o
n

in
%

(r) AWRT3 vs. UTIL.

-2,0E+06

0,0E+00

2,0E+06

4,0E+06

6,0E+06

8,0E+06

1,0E+07

1,2E+07

-2,E+06 -1,E+06 0,E+00 1,E+06 2,E+06 3,E+06 4,E+06 5,E+06 6,E+06 7,E+06 8,E+06

Average Weighted Response Time 4 in s

A
v
e
ra

g
e

W
e
ig

h
te

d
R

e
s
p

o
n

s
e

T
im

e
5

in
s

(s) AWRT4 vs. AWRT5.

0

10

20

30

40

50

60

70

80

90

100

-2,E+06 -1,E+06 0,E+00 1,E+06 2,E+06 3,E+06 4,E+06 5,E+06 6,E+06 7,E+06 8,E+06

Average Weighted Response Time 4 in s

U
ti

li
z
a
ti

o
n

in
%

(t) AWRT4 vs. UTIL.



198 APPENDIX E. REDUCED PARETO FRONT AFTER TRANSFORMATION

0

10

20

30

40

50

60

70

80

90

100

-2,0E+06 0,0E+00 2,0E+06 4,0E+06 6,0E+06 8,0E+06 1,0E+07 1,2E+07

Average Weighted Response Time 5 in s

U
ti

li
z
a
ti

o
n

in
%

(u) AWRT5 vs. UTIL.



Appendix F

Results for the Standard Scheduling
Strategies

Strategy AWRT[s] AWRT1[s] AWRT2[s] AWRT3[s] AWRT4[s] AWRT5[s] UTIL[%] fobj

CTC

CONS 53339.98 58721.59 63892.55 50544.89 47321.24 34493.34 66.99 842786.13

EASY 53186.81 59681.27 64976.06 50317.46 46120.01 31855.67 66.99 856717.01

FCFS 56628.18 61404.04 65466.71 53527.30 51754.98 41814.96 66.99 875907.26

KTH

CONS 73673.07 65027.56 80929.91 56074.17 75756.39 42298.36 71.91 973995.33

EASY 72741.20 65780.96 79927.68 54751.16 74706.34 40079.55 71.91 977520.40

FCFS 121948.02 140110.55 123977.14 99766.99 130932.73 92891.79 71.91 1897014.06

LANL

CONS 13047.71 12157.95 13845.04 10480.35 12261.62 19565.04 57.26 176959.77

EASY 12441.07 11873.23 13209.65 10182.37 11541.49 16987.81 57.26 171570.91

FCFS 14940.59 13587.08 15719.91 12209.99 14429.66 23723.52 57.26 198750.52

SDSC00

CONS 380995.77 499218.09 427545.77 283933.96 324866.66 393598.87 83.88 6702363.98

EASY 112115.38 140315.14 131577.23 98227.48 88384.43 73899.22 84.65 1929460.32

FCFS 1447752.5 1977583.3 1648640.2 990922.68 1207998.1 1627589.8 79.86 26370393.8

SDSC95

CONS 47180.46 45328.07 48836.64 53320.51 45998.57 40779.84 62.95 648627.33

EASY 46963.73 45506.81 48389.3 52621.21 44832.38 39545.96 62.95 648625.37

FCFS 48862.41 46257.04 50996.48 56207.66 48710.19 45785.27 62.95 666556.33

SDSC96

CONS 47682.64 44840.21 44688.45 84376.58 48517.47 75383.57 61.14 627155.92

EASY 47629.55 44758.70 44904.93 84515.25 48140.66 71770.79 61.14 627206.84

FCFS 48340.80 45531.11 45084.50 84703.12 49886.58 78738.10 61.14 635649.15

Table F.1: Absolute results for all workloads using the standard algorithms.

199



Appendix G

Best Solutions within the Pareto
Fronts of All Workloads

Workload AWRT[s] AWRT1[s] AWRT2[s] AWRT3[s] AWRT4[s] AWRT5[s] UTIL[%] fobj

CTC 55846.41 49652.04 56330.98 60691.71 59698.30 32726.87 66.99 721844.27

KTH 832985.93 48027.37 76180.28 4332150.50 166533.76 298256.18 71.37 784994.80

LANL 15017.17 9493.29 11290.87 16244.49 32815.08 28287.38 57.27 140096.38

SDSC00 1809506.30 56859.21 81736.64 3304774.30 3563947.30 89549.66 78.86 895538.67

SDSC95 50393.29 41620.90 48839.23 66642.56 97271.85 52066.75 62.95 611565.90

SDSC96 48678.71 44924.89 37967.59 107826.84 57319.80 98239.65 61.14 601119.24

Table G.1: Absolute results for the best solutions, regarding to the defined linear objective function, within
the Pareto fronts of all workloads. All AWRT values are given in seconds. The UTIL is given in %.

200



Appendix H

Results for Adapting a Greedy
Strategy

H.1 Results for Optimizing a Greedy Scheduling Strategy us-
ing the CTC Workload Trace and Applying the Resulting
Strategy to All Workloads

AWRT[s] AWRT1[s] AWRT2[s] AWRT3[s] AWRT4[s] AWRT5[s] UTIL[%] fobj

SOPT(CTC) applied to CTC, linear objective

319213.77 81372.52 138048.78 621559.19 698099.64 210240.23 71.92 1365920.33

SOPT(CTC) applied to CTC, region based objective

654651.62 140146.21 529618.99 772436.29 1155975.50 786146.82 71.36 3519938.06

SOPT(CTC) applied to KTH, linear objective

319213.77 81372.52 138048.78 621559.19 698099.64 210240.23 71.92 1365920.33

SOPT(CTC) applied to KTH, region based objective

654651.62 140146.21 529618.99 772436.29 1155975.50 786146.82 71.36 3519938.06

SOPT(CTC) applied to LANL, linear objective

15179.50 10881.21 13173.43 15576.71 22058.94 37017.68 57.27 161505.85

SOPT(CTC) applied to LANL, region based objective

15073.44 12315.83 13766.07 14668.02 19678.65 30805.13 57.27 178222.55

SOPT(CTC) applied to SDSC00, linear objective

1379456.80 142186.91 167517.78 1668284.90 3303098.20 1197680.40 79.62 2091940.22

SOPT(CTC) applied to SDSC00, region based objective

1535197.60 470185.88 1234798.10 1884381.70 2422670.80 2156024.40 78.31 9641051.20

SOPT(CTC) applied to SDSC95, linear objective

48976.58 44488.02 49990.19 62851.18 57985.21 48863.95 62.95 644840.93

SOPT(CTC) applied to SDSC95, region based objective

48578.54 44862.41 49349.33 60567.23 56188.69 45581.69 62.95 646021.38

SOPT(CTC) applied to SDSC96, linear objective

48612.16 44593.22 47432.77 93182.98 53008.97 80527.75 61.14 635663.22

SOPT(CTC) applied to SDSC96, region based objective

48573.59 44841.31 47005.92 92547.13 48558.91 78962.25 61.14 636436.81

Table H.1: Results for all workloads using the Greedy strategy optimized for the CTC workload trace. All
AWRT values are given in seconds. The UTIL is given in %.

201



202 APPENDIX H. RESULTS FOR ADAPTING A GREEDY STRATEGY

Strategy AWRT[%] AWRT1[%] AWRT2[%] AWRT3[%] AWRT4[%] AWRT5[%] UTIL[%] fobj[%]

SOPT(CTC) applied to CTC, linear objective

CONS -3.55 10.16 3.04 -11.34 -14.15 -1.72 0 8.00

EASY -3.85 11.60 4.66 -11.84 -17.12 -10.14 0 9.50

FCFS 2.46 14.08 5.38 -5.13 -4.37 16.09 0 11.48

SOPT(CTC) applied to CTC, region based objective

CONS -3.94 8.77 0.85 -16.24 -8.00 -8.74 0 6.37

EASY -4.24 10.24 2.50 -16.77 -10.81 -17.75 0 7.89

FCFS 2.09 12.76 3.23 -9.76 1.25 10.30 0 9.91

SOPT(CTC) applied to KTH, linear objective

CONS -333.28 -25.14 -70.58 -1008.46 -821.51 -397.04 0 -40.24

EASY -338.835 -23.70 -72.72 -1035.24 -834.46 -424.56 0 -39.73

FCFS -161.76 41.92 -11.35 -523.01 -433.17 -126.3 0 28.0

SOPT(CTC) applied to KTH, region based objective

CONS -788.59 -115.52 -554.42 -1277.53 -1425.91 -1758.57 0.77 -261.39

EASY -799.97 -113.05 -562.62 -1310.81 -1447.36 -1861.47 0.77 -260.09

FCFS -436.83 -0.03 -327.19 -674.24 -782.88 -746.30 0.77 -85.55

SOPT(CTC) applied to LANL, linear objective

CONS -8.57 14.78 10.97 -39.69 -64.87 -66.47 0 13.57

EASY -9.10 14.62 10.52 -40.24 -66.18 -67.75 0 13.32

FCFS -1.60 19.92 16.20 -27.57 -52.87 -56.04 0 18.74

SOPT(CTC) applied to LANL, region based objective

CONS -7.82 3.55 6.97 -31.54 -47.08 -38.54 0 4.63

EASY -8.34 3.36 6.49 -32.05 -48.25 -39.59 0 4.35

FCFS -0.89 9.36 12.43 -20.13 -36.38 -29.85 0 10.33

SOPT(CTC) applied to SDSC00, linear objective

CONS -262.07 -43.31 60.82 -487.56 -916.76 -204.29 5.08 22.59

EASY -1130.39 -1.33 -27.32 -1598.39 -3637.19 -1520.69 5.94 -8.42

FCFS 4.72 92.81 89.84 -68.36 -173.44 26.41 0.31 92.07

SOPT(CTC) applied to SDSC00, region based objective

CONS -302.94 -373.89 -188.81 -563.67 -645.74 -447.77 6.65 -256.76

EASY -1269.30 -235.09 -838.46 -1818.39 -2641.06 -2817.52 7.49 -399.68

FCFS -6.04 76.22 25.10 -90.16 -100.55 -32.47 1.96 63.44

SOPT(CTC) applied to SDSC95, linear objective

CONS -1.47 3.08 0.33 -13.78 -20.76 -8.86 0 2.25

EASY -1.48 3.13 0.32 -13.81 -21.00 -9.38 0 2.27

FCFS -0.23 3.82 1.97 -11.82 -19.04 -6.72 0 3.26

SOPT(CTC) applied to SDSC95, region based selection

CONS -0.65 2.27 1.61 -9.64 -17.01 -1.54 0 2.07

EASY -0.65 2.31 1.60 -9.67 -17.25 -2.03 0 2.10

FCFS 0.58 3.01 3.23 -7.76 -15.35 0.44 0 3.08

SOPT(CTC) applied to SDSC96, linear objective

CONS -1.95 0.55 -6.14 -10.44 -9.26 -6.82 -0.07 -1.36

EASY -2.06 0.37 -5.63 -10.26 -10.11 -12.20 -0.07 -1.35

FCFS -0.56 2.06 -5.21 -10.01 -6.26 -2.27 -0.07 0

SOPT(CTC) applied to SDSC96, region based objective

CONS -1.87 0 -5.19 -9.68 -0.09 -4.75 -0.07 -1.48

EASY -1.98 -0.18 -4.68 -9.50 -0.87 -10.02 -0.07 -1.47

FCFS -0.48 1.52 -4.26 -9.26 2.66 -0.28 -0.07 -0.12

Table H.2: Relative results for all workloads using the Greedy strategy optimized for the CTC workload trace.



H.2. GREEDY STRATEGY OPTIMIZED FOR ALL WORKLOADS 203

H.2 Optimizing a Greedy Strategy for all Workload Traces To-
gether and Applying the Resulting Strategy to All Traces.

AWRT[s] AWRT1[s] AWRT2[s] AWRT3[s] AWRT4[s] AWRT5[s] UTIL[%] fobj

ALLOPT applied to CTC, linear objective

55301.26 55104.02 61644.73 56354.42 53310.46 34913.51 66.99 797619.16

ALLOPT applied to KTH, linear objective

173973.49 69373.98 101523.67 359589.91 271387.74 88983.09 71.92 1099834.44

ALLOPT applied to LANL, linear objective

15226.17 11296.57 12836.71 16418.06 21332.37 38669.80 57.27 164312.57

ALLOPT applied to SDSC00, linear objective

1128705.50 106215.53 103511.90 1568765.40 2633270.80 160564.69 79.37 1476202.90

ALLOPT applied to SDSC95, linear objective

48686.53 45167.61 48470.83 62108.00 57228.19 46793.74 62.95 645559.46

ALLOPT applied to SDSC96, linear objective

48496.24 44966.97 44760.14 92746.26 54717.88 75382.74 61.14 628710.23

Table H.3: Results for all workloads using the Greedy strategy optimized for all workloads together. All AWRT
values are given in seconds. The UTIL is given in %.

Strategy AWRT[%] AWRT1[%] AWRT2[%] AWRT3[%] AWRT4[%] AWRT5[%] UTIL[%] fobj[%]

ALLOPT applied to CTC, linear objective

CONS -3.68 6.16 3.52 -11.49 -12.66 -1.22 0 5.36

EASY -3.98 7.67 5.13 -12.00 -15.59 -9.60 0 6.90

FCFS 2.34 10.26 5.84 -5.28 -3.01 16.50 0 8.94

ALLOPT applied to KTH, linear objective

CONS -136.14 -6.68 -25.45 -541.28 -258.24 -110.37 0 -12.92

EASY -139.17 -5.46 -27.02 -556.77 -263.27 -122.02 0 -12.51

FCFS -42.66 50.49 18.11 -260.43 -107.27 4.21 0 42.02

ALLOPT applied to LANL, linear objective

CONS -8.91 11.53 13.25 -47.24 -59.44 -73.90 0 12.07

EASY -9.43 11.36 12.80 -47.81 -60.71 -75.23 0 11.82

FCFS -1.91 16.86 18.34 -34.46 -47.84 -63.00 0 17.33

ALLOPT applied SDSC00, linear objective

CONS -196.25 -7.05 75.79 -452.51 -710.57 59.21 5.39 45.37

EASY -906.74 24.30 21.33 -1497.07 -2879.34 -117.28 6.24 23.49

FCFS 22.04 94.63 93.72 -58.31 -117.99 90.13 0.63 94.40

ALLOPT applied to SDSC95, linear objective

CONS -0.87 1.60 3.36 -12.43 -19.18 -4.24 0 2.14

EASY -0.88 1.65 3.35 -12.46 -19.42 -4.74 0 2.17

FCFS 0.36 2.36 4.95 -10.50 -17.49 -2.20 0 3.15

ALLOPT applied to SDSC96, linear objective

CONS -1.71 -0.28 -0.16 -9.92 -12.78 0 -0.07 -0.25

EASY -1.82 -0.47 0.32 -9.74 -13.66 -5.03 -0.07 -0.24

FCFS -0.32 1.24 0.72 -9.50 -9.68 4.26 -0.07 1.09

Table H.4: Relative results for all workloads by optimizing the Greedy algorithms for all workloads in parallel
by averaging the objective values.



Appendix I

Results for the Iterative Approach

I.1 Results for Optimizing the Iterative Approach for All In-
dividual Workload Traces

Workload AWRT[s] AWRT1[s] AWRT2[s] AWRT3[s] AWRT4[s] AWRT5[s] UTIL[%] fobj

CTC 54400.76 50975.42 59358.16 53566.2 54315.07 44734.47 67 747186.8

KTH 85969.92 69280.74 92753.13 71047.02 89961.7 64283.16 71.92 1063819.92

LANL 14805.47 9621.79 11648.92 14331.4 16472.52 69217.55 57.27 142813.58

SDSC00 766506.73 132819.73 779247.7 803640.45 1299342 1422446.6 82.89 4445188.1

SDSC95 47678.57 44372.18 50265.6 54946.19 51074.52 41411.24 62.95 644784.2

SDSC96 48320.74 44712.95 42472.13 100347.07 48990.32 74794.47 61.1 617018.06

Table I.1: Absolute results for all workloads using the iterative approach. All AWRT values are given in seconds.
The UTIL is given in %.

Strategy AWRT[%] AWRT1[%] AWRT2[%] AWRT3[%] AWRT4[%] AWRT5[%] UTIL[%] fobj[%]

SOPT(CTC) applied to CTC

CONS -1.99 13.19 7.1 -5.98 -14.78 -29.69 -0.01 11.34

EASY -2.28 14.59 8.65 -6.46 -17.77 -40.43 -0.01 12.78

FCFS 3.93 16.98 9.33 -0.07 -4.95 -6.98 -0.01 14.7

SOPT(KTH) applied to KTH

CONS -16.69 -6.54 -14.61 -26.7 -18.75 -51.98 0 -9.22

EASY -18.19 -5.32 -16.05 -29.76 -20.42 -60.39 0 -8.83

FCFS 29.5 50.55 25.19 28.79 31.29 30.8 0 43.92

SOPT(LANL) applied to LANL

CONS -13.47 20.86 15.86 -36.75 -34.34 -253.78 0 19.3

EASY -19 18.96 11.82 -40.75 -42.72 -307.45 0 16.76

FCFS 0.9 29.18 25.9 -17.37 -14.16 -191.77 0 28.14

SOPT(SDSC00) applied to SDSC00

CONS -101.19 73.39 -82.26 -183.04 -299.96 -261.39 1.19 33.68

EASY -583.68 5.34 -492.24 -718.14 -1370.1 -1824.85 2.08 -130.39

FCFS 47.06 93.28 52.73 18.9 -7.56 12.6 -3.78 83.14

SOPT(SDSC95) applied to SDSC95

CONS -1.06 2.11 -2.93 -3.05 -11.04 -1.55 0 0.59

EASY -1.52 2.49 -3.88 -4.42 -13.92 -4.72 0 0.59

FCFS 2.42 4.07 1.43 2.24 -4.85 9.55 0 3.27

SOPT(SDSC96) applied to SDSC96

Continued on next page

204



I.2. ITERATIVE APPROACH CTC OPTIMIZED 205

Strategy AWRT[%] AWRT1[%] AWRT2[%] AWRT3[%] AWRT4[%] AWRT5[%] UTIL[%] fobj[%]

CONS -1.34 0.28 4.96 -18.93 -0.97 0.78 0.07 1.62

EASY -1.45 0.1 5.42 -18.73 -1.76 -4.21 0.07 1.62

FCFS 0.04 1.8 5.79 -18.47 1.8 5.01 0.07 2.93

Table I.2: Relative results for all workloads using the iterative approach in comparison to the standard algo-
rithms. The resulting scheduling strategies are optimized for all workload traces individually.

I.2 Results for Optimizing the Iterative Approach using the
CTC Workload Trace and Applying the Resulting Strat-
egy to All Workloads

Workload AWRT[s] AWRT1[s] AWRT2[s] AWRT3[s] AWRT4[s] AWRT5[s] UTIL[%] fobj

CTC 54400.76 50975.42 59358.16 53566.2 54315.07 44734.47 66.99 747186.8

KTH 161298.12 71753.14 108834.6 168243.75 345432.62 281573.22 71.8 1152869.76

LANL 14446.73 10922.24 14368.75 12877.66 17934.26 28341.27 57.27 166697.38

SDSC00 1168152 530464.41 883302.75 1028014.2 1971139.8 2843025.2 80.4 8837855.1

SDSC95 48289.04 43677.53 49312.87 61714.44 58540.08 49056.08 62.95 634026.83

SDSC96 48726.86 44773.7 49018.88 88050.39 56446.85 80015.55 61.14 643812.52

Table I.3: Absolute results for all workloads using the iterative approach with the CTC optimized settings. All
AWRT values are given in seconds. The UTIL is given in %.

Strategy AWRT[%] AWRT1[%] AWRT2[%] AWRT3[%] AWRT4[%] AWRT5[%] UTIL[%] fobj[%]

SOPT(CTC) applied to CTC

CONS -1.99 13.19 7.1 -5.98 -14.78 -29.69 0 11.34

EASY -2.28 14.59 8.65 -6.46 -17.77 -40.43 0 12.78

FCFS 3.93 16.98 9.33 -0.07 -4.95 -6.98 0 14.7

SOPT(CTC) applied to KTH

CONS -118.94 -10.34 -34.48 -200.04 -355.98 -565.68 0.16 -18.37

EASY -121.74 -9.08 -36.17 -207.29 -362.39 -602.54 0.16 -17.94

FCFS -32.27 48.79 12.21 -68.64 -163.82 -203.12 0.16 39.23

SOPT(CTC) applied to LANL

CONS -10.72 10.16 -3.78 -22.87 -46.26 -44.86 0 5.8

EASY -16.12 8.01 -8.77 -26.47 -55.39 -66.83 0 2.84

FCFS 3.31 19.61 8.6 -5.47 -24.29 -19.46 0 16.13

SOPT(CTC) applied to SDSC00

CONS -206.6 -6.26 -106.6 -262.06 -506.75 -622.32 4.15 -31.86

EASY -941.92 -278.05 -571.32 -946.56 -2130.19 -3747.16 5.02 -358.05

FCFS 19.31 73.18 46.42 -3.74 -63.17 -74.68 -0.67 66.49

SOPT(CTC) applied to SDSC95

CONS -2.35 3.64 -0.98 -15.74 -27.26 -20.29 0 2.25

EASY -2.82 4.02 -1.91 -17.28 -30.58 -24.05 0 2.25

FCFS 1.17 5.58 3.3 -9.8 -20.18 -7.14 0 4.88

SOPT(CTC) applied to SDSC96

CONS -2.19 0.15 -9.69 -4.35 -16.34 -6.14 0 -2.66

EASY -2.3 -0.03 -9.16 -4.18 -17.25 -11.49 0 -2.65

FCFS -0.8 1.66 -8.73 -3.95 -13.15 -1.62 0 -1.28

Table I.4: Relative results for all workloads using the iterative approach with the CTC optimized settings in
comparison to the standard algorithms.



206 APPENDIX I. RESULTS FOR THE ITERATIVE APPROACH

I.3 Optimization using the Iterative Approach for all Work-
load Traces Together and Applying the Resulting Strategy
to All Traces.

Workload AWRT[s] AWRT1[s] AWRT2[s] AWRT3[s] AWRT4[s] AWRT5[s] UTIL[%] fobj

CTC 55483.98 58551.8 68697.13 51446.34 48908.24 38140.78 66.99 860306.5

KTH 94015.54 86456.82 102522.4 72038.11 95728.07 66072.49 71.92 1274657.7

LANL 14928.39 12292.97 15350.09 11386.62 17035.39 29166.68 57.27 184330.11

SDSC00 522934.58 639873.6 621761.22 379899.84 478682.58 545000 82.68 8885780.8

SDSC95 48304.22 44767.66 51473.35 53849.09 52238.59 46277.13 62.95 653570

SDSC96 48163.52 45028.72 43656.17 89902.65 52717.47 78141.35 61.14 624911.86

Table I.5: Absolute results for all workloads using the iterative approach. The optimization uses all workload
traces together. All AWRT values are given in seconds. The UTIL is given in %.

Strategy AWRT[%] AWRT1[%] AWRT2[%] AWRT3[%] AWRT4[%] AWRT5[%] UTIL[%] fobj[%]

SOPT(CTC) applied to CTC

CONS -4.02 0.29 -7.52 -1.78 -3.35 -10.57 0 -2.08

EASY -4.32 1.89 -5.73 -2.24 -6.05 -19.73 0 -0.42

FCFS 2.02 4.65 -4.93 3.89 5.5 8.79 0 1.78

SOPT(KTH) applied to KTH

CONS -27.61 -32.95 -26.68 -28.47 -26.36 -56.21 0 -30.87

EASY -29.25 -31.43 -28.27 -31.57 -28.14 -64.85 0 -30.4

FCFS 22.91 38.29 17.31 27.79 26.89 28.87 0 32.81

SOPT(LANL) applied to LANL

CONS -14.41 -1.11 -10.87 -8.65 -38.93 -49.08 0 -4.16

EASY -19.99 -3.54 -16.2 -11.83 -47.6 -71.69 0 -7.44

FCFS 0.08 9.52 2.35 6.74 -18.06 -22.94 0 7.26

SOPT(SDSC00) applied to SDSC00

CONS -37.25 -28.18 -45.43 -33.8 -47.35 -38.56 1.43 -32.58

EASY -366.43 -356.03 -372.54 -286.76 -441.59 -638 2.32 -360.53

FCFS 63.88 67.64 62.29 61.66 60.37 66.49 -3.53 66.3

SOPT(SDSC95) applied to SDSC95

CONS -2.38 1.24 -5.4 -0.99 -13.57 -13.48 0 -0.76

EASY -2.85 1.62 -6.37 -2.33 -16.52 -17.02 0 -0.76

FCFS 1.14 3.22 -0.94 4.2 -7.24 -1.07 0 1.95

SOPT(SDSC96) applied to SDSC96

CONS -1.01 -0.42 2.31 -6.55 -8.66 -3.66 0 0.36

EASY -1.12 -0.6 2.78 -6.37 -9.51 -8.88 0 0.37

FCFS 0.37 1.1 3.17 -6.14 -5.67 0.76 0 1.69

Table I.6: Relative results for all workloads using the iterative approach in comparison to the standard algo-
rithms. The optimization uses all workloads together.



Appendix J

Results for the Probability based
Approach

J.1 Results for Optimizing the Probability based Approach
for All Individual Workload Traces

Workload AWRT[s] AWRT1[s] AWRT2[s] AWRT3[s] AWRT4[s] AWRT5[s] UTIL[%] fobj

CTC 54535.76 53780.18 59448.48 53185.9 53417.77 45390.11 66.99 775595.77

KTH 88043.96 60596.25 93862.87 72500.73 101408.38 59037.76 71.92 981413.97

LANL 14780.98 9997.5 12536.12 14323.03 18923.72 51405.94 57.27 150119.51

SDSC00 838340.38 69673.97 115066.63 371471.72 2452272.8 2580000 81.66 1157006.19

SDSC95 47937.31 42870.26 50308.19 59237.94 58109.18 49094.22 62.95 629935.38

SDSC96 48369.99 44727.38 43228.86 99394 48493.67 75568.73 61.14 620189.24

Table J.1: Absolute results for all workloads using the probability based procedure. All AWRT values are given
in seconds. The UTIL is given in %.

Strategy AWRT[%] AWRT1[%] AWRT2[%] AWRT3[%] AWRT4[%] AWRT5[%] UTIL[%] fobj[%]

SOPT(CTC) applied to CTC

CONS -2.24 8.41 6.96 -5.23 -12.88 -31.59 0 7.97

EASY -2.54 9.89 8.51 -5.7 -15.82 -42.49 0 9.47

FCFS 3.7 12.42 9.19 0.64 -3.21 -8.55 0 11.45

SOPT(KTH) applied to KTH

CONS -19.51 6.81 -15.98 -29.29 -33.86 -39.57 0 -0.76

EASY -21.04 7.88 -17.43 -32.42 -35.74 -47.3 0 -0.4

FCFS 27.8 56.75 24.29 27.33 22.55 36.44 0 48.27

SOPT(LANL) applied to LANL

CONS -13.28 17.77 9.45 -36.67 -54.33 -162.74 0 15.17

EASY -18.81 15.8 5.1 -40.66 -63.96 -202.6 0 12.5

FCFS 1.07 26.42 20.25 -17.31 -31.14 -116.69 0 24.47

Optimized for SDSC00

CONS -120.04 86.04 73.09 -30.83 -654.86 -554.79 2.66 82.74

EASY -647.75 50.34 12.55 -278.17 -2674.55 -3387.5 3.54 40.03

FCFS 42.09 96.48 93.02 62.51 -103 -58.35 -2.24 95.61

SOPT(SDSC95) applied to SDSC95

CONS -1.6 5.42 -3.01 -11.1 -26.33 -20.39 0 2.88

Continued on next page

207



208 APPENDIX J. RESULTS FOR THE PROBABILITY BASED APPROACH

Strategy AWRT[%] AWRT1[%] AWRT2[%] AWRT3[%] AWRT4[%] AWRT5[%] UTIL[%] fobj[%]

EASY -2.07 5.79 -3.97 -12.57 -29.61 -24.14 0 2.88

FCFS 1.89 7.32 1.35 -5.39 -19.3 -7.23 0 5.49

SOPT(SDSC96) applied to SDSC96

CONS -1.44 0.25 3.27 -17.8 0.05 -0.25 0 1.11

EASY -1.55 0.07 3.73 -17.6 -0.73 -5.29 0 1.12

FCFS -0.06 1.77 4.12 -17.34 2.79 4.03 0 2.43

Table J.2: Relative results for all workloads using the probability based procedure in comparison to the standard
algorithms.

J.2 Results for Optimizing the Probability based Approach
using the CTC Workload Trace and Applying the Result-
ing Strategy to All Workloads

Workload AWRT[s] AWRT1[s] AWRT2[s] AWRT3[s] AWRT4[s] AWRT5[s] UTIL[%] fobj

CTC 54535.76 53780.18 59448.48 53185.9 53417.77 45390.11 66.99 775595.72

KTH 483867.34 72448.69 219202.93 500402.74 1427585 901525.28 71.92 1601298.66

LANL 14451.97 10186.93 14515.58 13144.97 18531.45 28247.5 57.27 159931.61

SDSC00 1560737.8 372139.36 1602530.1 1930339.5 2198176.1 2930000 80.25 10131514

SDSC95 47823.23 42400.9 49790.97 61088.9 59876.93 48054.78 62.95 623172.83

SDSC96 48257.94 43496.01 51800.84 89624.77 56190.12 80805.12 61.14 642163.47

Table J.3: Absolute results for all workloads using the probabilistic approach with the CTC optimized settings.
All AWRT values are given in seconds. The UTIL is given in %.

Strategy AWRT[%] AWRT1[%] AWRT2[%] AWRT3[%] AWRT4[%] AWRT5[%] UTIL[%] fobj[%]

SOPT(CTC) applied to CTC

CONS -2.24 8.41 6.96 -5.23 -12.88 -31.59 0 7.97

EASY -2.54 9.89 8.51 -5.7 -15.82 -42.49 0 9.47

FCFS 3.7 12.42 9.19 0.64 -3.21 -8.55 0 11.45

SOPT(CTC) applied to KTH

CONS -556.78 -11.41 -170.86 -792.39 -1784.44 -2031.35 0 -64.41

EASY -565.19 -10.14 -174.25 -813.96 -1810.93 -2149.34 0 -63.81

FCFS -296.78 48.29 -76.81 -401.57 -990.32 -870.51 0 15.59

SOPT(CTC) applied to LANL

CONS -10.76 16.21 -4.84 -25.42 -51.13 -44.38 0 9.62

EASY -16.16 14.2 -9.89 -29.1 -60.56 -66.28 0 6.78

FCFS 3.27 25.02 7.66 -7.66 -28.43 -19.07 0 19.53

SOPT(CTC) applied to SDSC00

CONS -309.65 25.46 -274.82 -579.86 -576.64 -644.87 4.34 -51.16

EASY -1292.08 -165.22 -1117.94 -1865.17 -2387.06 -3867.31 5.2 -425.1

FCFS -7.8 81.18 2.8 -94.8 -81.97 -80.13 -0.48 61.58

SOPT(CTC) applied to SDSC95

CONS -1.36 6.46 -1.95 -14.57 -30.17 -17.84 0 3.92

EASY -1.83 6.83 -2.9 -16.09 -33.56 -21.52 0 3.92

FCFS 2.13 8.34 2.36 -8.68 -22.92 -4.96 0 6.51

SOPT(CTC) applied to SDSC96

CONS -1.21 3 -15.92 -6.22 -15.81 -7.19 0 -2.39

EASY -1.32 2.82 -15.36 -6.05 -16.72 -12.59 0 -2.38

Continued on next page



J.3. PROBABILITY BASED APPROACH OPTIMIZED FOR ALL WORKLOADS 209

Strategy AWRT[%] AWRT1[%] AWRT2[%] AWRT3[%] AWRT4[%] AWRT5[%] UTIL[%] fobj[%]

FCFS 0.17 4.47 -14.9 -5.81 -12.64 -2.63 0 -1.02

Table J.4: Relative results for all workloads using the probabilistic approach with the CTC optimized settings
in comparison to the standard algorithms.

J.3 Optimization using the Probability based Approach for
all Workload Traces Together and Applying the Resulting
Strategy to All Traces.

Workload AWRT[s] AWRT1[s] AWRT2[s] AWRT3[s] AWRT4[s] AWRT5[s] UTIL[%] fobj

CTC 53834.34 56843.27 73508.78 49069.06 43436.79 31121.03 66.99 862467.85

KTH 108101.90 148512.76 113205.80 78159.96 105153.19 71543.71 71.92 1937950.8

LANL 15094.02 12318.24 15660.68 12330.11 15780.78 30006.74 57.27 185825.08

SDSC00 1180185.3 1488859.2 1513779 897579.84 945511.06 965060.64 80.52 20943708

SDSC95 49766.82 47620.09 52848.39 53599.35 47271.91 43745.87 62.95 687594.47

SDSC96 48547.26 45407.40 46120.57 86365.70 52350.01 75291.59 61.14 638556.24

Table J.5: Absolute results for all workloads using the probabilistic approach. The optimization uses all work-
load traces together. All AWRT values are given in seconds. The UTIL is given in %.

Strategy AWRT[%] AWRT1[%] AWRT2[%] AWRT3[%] AWRT4[%] AWRT5[%] UTIL[%] fobj[%]

SOPT(CTC) applied to CTC

CONS -0.93 3.20 -15.05 2.92 8.21 9.78 0.00 -2.34

EASY -1.22 4.76 -13.13 2.48 5.82 2.31 0.00 -0.67

FCFS 4.93 7.43 -12.28 8.33 16.07 25.57 0.00 1.53

SOPT(CTC) applied to KTH

CONS -46.73 -128.38 -39.88 -39.39 -38.80 -69.14 0.00 -98.97

EASY -48.61 -125.77 -41.64 -42.75 -40.76 -78.50 0.00 -98.25

FCFS 11.35 -6.00 8.69 21.66 19.69 22.98 0.00 -2.16

SOPT(CTC) applied to LANL

CONS -15.68 -1.32 -13.11 -17.65 -28.70 -53.37 0.00 -5.01

EASY -21.32 -3.75 -18.55 -21.09 -36.73 -76.64 0.00 -8.31

FCFS -1.03 9.34 0.38 -0.98 -9.36 -26.49 0.00 6.50

SOPT(CTC) applied to SDSC00

CONS -209.76 -198.24 -254.06 -216.12 -191.05 -145.19 4.02 -212.48

EASY -952.65 -961.08 -1050.49 -813.78 -969.77 -1205.91 4.88 -985.47

FCFS 18.48 24.71 8.18 9.42 21.73 40.71 -0.81 20.58

SOPT(CTC) applied to SDSC95

CONS -5.48 -5.06 -8.21 -0.52 -2.77 -7.27 0.00 -6.01

EASY -5.97 -4.64 -9.22 -1.86 -5.44 -10.62 0.00 -6.01

FCFS -1.85 -2.95 -3.63 4.64 2.95 4.45 0.00 -3.16

SOPT(CTC) applied to SDSC96

CONS -1.81 -1.26 -3.20 -2.36 -7.90 0.12 0.00 -1.82

EASY -1.93 -1.45 -2.71 -2.19 -8.74 -4.91 0.00 -1.81

FCFS -0.43 0.27 -2.30 -1.96 -4.94 4.38 0.00 -0.46

Table J.6: Relative results for all workloads using the probabilistic approach in comparison to the standard
algorithms. The optimization uses all workloads together.



Appendix K

Results for the Michigan Approach

K.1 Results for Optimizing the Michigan Approach for All
Individual Workload Traces

Workload AWRT[s] AWRT1[s] AWRT2[s] AWRT3[s] AWRT4[s] AWRT5[s] UTIL[%] fobj

CTC 56067.5 49750.49 56705.27 49313.61 58276.98 80794.31 66.99 724325.94

KTH 105019.36 48891.73 73412.39 82851.13 215939.66 479282.09 71.92 782566.89

LANL 14123.25 9532.76 11251.01 12556.67 17037.52 62746.78 57.27 140331.68

SDSC00 1067404 55682.35 76868.81 103289.86 2353014.5 12000000 80.5 864298.69

SDSC95 47439.84 41380.64 48197.06 63535.15 64261.04 55634.23 62.95 606594.66

SDSC96 48238.37 43880.87 45836.32 98219.99 55418.29 81347.34 61.14 622153.91

Table K.1: Absolute results for all workloads using the Symbiotic Evolution. All AWRT values are given in
seconds. The UTIL is given in %.

Strategy AWRT[%] AWRT1[%] AWRT2[%] AWRT3[%] AWRT4[%] AWRT5[%] UTIL[%] fobj[%]

SOPT(CTC) applied to CTC

CONS -5.11 15.28 11.25 2.44 -23.15 -134.23 0 14.06

EASY -5.42 16.64 12.73 2 -26.36 -153.63 0 15.45

FCFS 0.99 18.98 13.38 7.87 -12.6 -93.22 0 17.31

SOPT(KTH) applied to KTH

CONS -42.55 24.81 9.29 -47.75 -185.04 -1033.1 0 19.65

EASY -44.37 25.67 8.15 -51.32 -189.05 -1095.83 0 19.94

FCFS 13.88 65.1 40.79 16.96 -64.92 -415.96 0 58.75

SOPT(LANL) applied to LANL

CONS -8.24 21.59 18.74 -19.81 -38.95 -220.71 0 20.7

EASY -13.52 19.71 14.83 -23.32 -47.62 -269.36 0 18.21

FCFS 5.47 29.84 28.43 -2.84 -18.07 -164.49 0 29.39

SOPT(SDSC00) applied to SDSC00

CONS -180.16 88.85 82.02 63.62 -624.3 -2953.26 4.03 87.1

EASY -852.06 60.32 41.58 -5.15 -2562.25 -16162.14 4.9 55.21

FCFS 26.27 97.18 95.34 89.58 -94.79 -638.37 -0.8 96.72

SOPT(SDSC95) applied to SDSC95

CONS -0.55 8.71 1.31 -19.16 -39.7 -36.43 0 6.48

EASY -1.01 9.07 0.4 -20.74 -43.34 -40.68 0 6.48

FCFS 2.91 10.54 5.49 -13.04 -31.93 -21.51 0 9

SOPT(SDSC96) applied to SDSC96

Continued on next page

210



K.2. MICHIGAN APPROACH CTC OPTIMIZED 211

Strategy AWRT[%] AWRT1[%] AWRT2[%] AWRT3[%] AWRT4[%] AWRT5[%] UTIL[%] fobj[%]

CONS -1.17 2.14 -2.57 -16.41 -14.22 -7.91 0 0.8

EASY -1.28 1.96 -2.07 -16.22 -15.12 -13.34 0 0.81

FCFS 0.21 3.62 -1.67 -15.96 -11.09 -3.31 0 2.12

Table K.2: Relative results for all workloads using the Michigan approach in comparison to the standard
algorithms.

K.2 Results for Optimizing the Michigan Approach using the
CTC Workload Trace and Applying the Resulting Strat-
egy to All Workloads

Workload AWRT[s] AWRT1[s] AWRT2[s] AWRT3[s] AWRT4[s] AWRT5[s] UTIL[%] fobj

CTC 56067.5 49750.49 56705.27 49313.61 58276.98 80794.31 66.99 724325.94

KTH 310640.28 48990.2 81826.42 103892.48 755286.82 6812337.1 71.91 817207.63

LANL 15506.93 9509 11351.81 13881.09 20003.26 79905.11 57.27 140497.29

SDSC00 1537684.1 58757.2 86919.28 141581.83 4035413.5 13200000 78.99 935249.15

SDSC95 50359.6 41606.84 48981.84 65500.27 96219.11 60987.81 62.95 611995.75

SDSC96 48473.24 42947.73 50244.96 94852.21 71478.37 100717.09 61.14 630457.16

Table K.3: Absolute results for all workloads using the Michigan approach with the CTC optimized settings.
All AWRT values are given in seconds. The UTIL is given in %.

Strategy AWRT[%] AWRT1[%] AWRT2[%] AWRT3[%] AWRT4[%] AWRT5[%] UTIL[%] fobj[%]

SOPT(CTC) applied to CTC

CONS -5.11 15.28 11.25 2.44 -23.15 -134.23 0 14.06

EASY -5.42 16.64 12.73 2 -26.36 -153.63 0 15.45

FCFS 0.99 18.98 13.38 7.87 -12.6 -93.22 0 17.31

SOPT(CTC) applied to KHT

CONS -321.65 24.66 -1.11 -85.28 -896.99 -16005.44 0 16.1

EASY -327.05 25.53 -2.38 -89.75 -911.01 -16897.04 0 16.4

FCFS -154.73 65.03 34 -4.14 -476.85 -7233.63 0 56.92

SOPT(CTC) applied to LANL

CONS -18.85 21.79 18.01 -32.45 -63.14 -308.41 0 20.6

EASY -24.64 19.91 14.06 -36.32 -73.32 -370.37 0 18.11

FCFS -3.79 30.01 27.79 -13.69 -38.63 -236.82 0 29.31

SOPT(CTC) applied to SDSC00

CONS -303.6 88.23 79.67 50.14 -1142.18 -3246.81 5.84 86.05

EASY -1271.52 58.12 33.94 -44.14 -4465.75 -17725.63 6.69 51.53

FCFS -6.21 97.03 94.73 85.71 -234.06 -709.36 1.11 96.45

SOPT(CTC) applied to SDSC95

CONS -6.74 8.21 -0.3 -22.84 -109.18 -49.55 0 5.65

EASY -7.23 8.57 -1.22 -24.48 -114.62 -54.22 0 5.65

FCFS -3.06 10.05 3.95 -16.53 -97.53 -33.2 0 8.19

SOPT(CTC) applied to SDSC96

CONS -1.66 4.22 -12.43 -12.42 -47.32 -33.61 0 -0.53

EASY -1.77 4.05 -11.89 -12.23 -48.48 -40.33 0 -0.52

FCFS -0.27 5.67 -11.45 -11.98 -43.28 -27.91 0 0.82

Table K.4: Relative results for all workloads using the Michigan approach with the CTC optimized settings in
comparison to the standard algorithms.



212 APPENDIX K. RESULTS FOR THE MICHIGAN APPROACH

K.3 Optimization using the Michigan Approach for all Work-
load Traces Together and Applying the Resulting Strat-
egy to All Traces.

Workload AWRT[s] AWRT1[s] AWRT2[s] AWRT3[s] AWRT4[s] AWRT5[s] UTIL[%] fobj

CTC 54917.7 50042.74 56752 48100.73 57149.34 70677.04 66.99 727435.42

KTH 104309.26 49493.6 73827.12 81198.33 199620.08 621065.37 71.92 790244.45

LANL 14041.27 9543.32 11278.81 12552.57 16480.21 62142.67 57.27 140548.41

SDSC00 1057520.1 56208.71 77992.19 107241.77 2353008.8 11700000 80.63 874055.91

SDSC95 47513.3 41424.05 48315.96 63459.32 64525.55 55773.13 62.95 607504.33

SDSC96 48346.64 42867.32 50240.32 95984.56 67291.44 95529.59 61.14 629634.42

Table K.5: Absolute results for all workloads using the Michigan approach. The optimization uses all workloads
together. All AWRT values are given in seconds. The UTIL is given in %.

Strategy AWRT[%] AWRT1[%] AWRT2[%] AWRT3[%] AWRT4[%] AWRT5[%] UTIL[%] fobj[%]

SOPT(CTC) applied to CTC

CONS -2.96 14.78 11.18 4.84 -20.77 -104.9 0 13.69

EASY -3.25 16.15 12.66 4.41 -23.91 -121.87 0 15.09

FCFS 3.02 18.5 13.31 10.14 -10.42 -69.02 0 16.95

SOPT(KTH) applied to KTH

CONS -41.58 23.89 8.78 -44.81 -163.5 -1368.3 0 18.87

EASY -43.4 24.76 7.63 -48.3 -167.21 -1449.58 0 19.16

FCFS 14.46 64.68 40.45 18.61 -52.46 -568.59 0 58.34

SOPT(LANL) applied to LANL

CONS -7.61 21.51 18.54 -19.77 -34.4 -217.62 0 20.58

EASY -12.86 19.62 14.62 -23.28 -42.79 -265.81 0 18.08

FCFS 6.02 29.76 28.25 -2.81 -14.21 -161.95 0 29.28

SOPT(SDSC00) applied to SDSC00

CONS -177.57 88.74 81.76 62.23 -624.3 -2872.84 3.88 86.96

EASY -843.24 59.94 40.73 -9.18 -2562.24 -15733.8 4.75 54.7

FCFS 26.95 97.16 95.27 89.18 -94.79 -618.92 -0.96 96.69

SOPT(SDSC95) applied to SDSC95

CONS -0.71 8.61 1.07 -19.01 -40.28 -36.77 0 6.34

EASY -1.17 8.97 0.15 -20.6 -43.93 -41.03 0 6.34

FCFS 2.76 10.45 5.26 -12.9 -32.47 -21.81 0 8.86

SOPT(SDSC96) applied to SDSC96

CONS -1.39 4.4 -12.42 -13.76 -38.7 -26.72 0 -0.4

EASY -1.51 4.23 -11.88 -13.57 -39.78 -33.1 0 -0.39

FCFS -0.01 5.85 -11.44 -13.32 -34.89 -21.33 0 0.95

Table K.6: Relative results for all workloads using the Michigan approach in comparison to the standard
algorithms. The optimization uses all workloads together.



Appendix L

Results for the Pittsburgh
Approach

L.1 Results for Optimizing the Pittsburgh Approach for All
Individual Workload Traces

Workload AWRT[s] AWRT1[s] AWRT2[s] AWRT3[s] AWRT4[s] AWRT5[s] UTIL[%] fobj

CTC 56428.44 49639.2 56722.8 49541.76 59212.09 81268.33 66.99 723283.13

KTH 104694.56 49108.6 73183.87 86308.84 223735.78 338484.7 71.92 783821.47

LANL 14124.43 9528.29 11249.62 12635.59 16989.57 62694.38 57.27 140281.4

SDSC00 1168495.7 54967.82 75822.84 110717.73 2947318.9 10700000 79.94 852969.57

SDSC95 47487.81 41389.15 48351.07 63511.55 64362.7 54789.25 62.95 607295.79

SDSC96 48540.72 44152.26 44365.2 101444.88 60730.68 74705.6 61.14 618983.39

Table L.1: Absolute results for all workloads using the Pittsburgh approach. All AWRT values are given in
seconds. The UTIL is given in %.

Strategy AWRT[%] AWRT1[%] AWRT2[%] AWRT3[%] AWRT4[%] AWRT5[%] UTIL[%] fobj[%]

SOPT(CTC) applied to CTC

CONS -5.79 15.47 11.22 1.98 -25.13 -135.61 0 14.18

EASY -6.09 16.83 12.7 1.54 -28.39 -155.11 0 15.58

FCFS 0.35 19.16 13.36 7.45 -14.41 -94.35 0 17.42

SOPT(KTH) applied to KTH

CONS -42.11 24.48 9.57 -53.92 -195.34 -700.23 0 19.53

EASY -43.93 25.35 8.44 -57.64 -199.49 -744.53 0 19.82

FCFS 14.15 64.95 40.97 13.49 -70.88 -264.39 0 58.68

SOPT(LANL) applied to LANL

CONS -8.25 21.63 18.75 -20.56 -38.56 -220.44 0 20.73

EASY -13.53 19.75 14.84 -24.09 -47.2 -269.06 0 18.24

FCFS 5.46 29.87 28.44 -3.49 -17.74 -164.27 0 29.42

SOPT(SDSC00) applied to SDSC00

CONS -206.7 88.99 82.27 61.01 -807.24 -2615.05 4.71 87.27

EASY -942.23 60.83 42.37 -12.72 -3234.66 -14360.76 5.57 55.79

FCFS 19.29 97.22 95.4 88.83 -143.98 -556.58 -0.08 96.77

SOPT(SDSC95) applied to SDSC95

CONS -0.65 8.69 0.99 -19.11 -39.92 -34.35 0 6.37

Continued on next page

213



214 APPENDIX L. RESULTS FOR THE PITTSBURGH APPROACH

Strategy AWRT[%] AWRT1[%] AWRT2[%] AWRT3[%] AWRT4[%] AWRT5[%] UTIL[%] fobj[%]

EASY -1.12 9.05 0.08 -20.7 -43.56 -38.55 0 6.37

FCFS 2.81 10.52 5.19 -12.99 -32.13 -19.67 0 8.89

SOPT(SDSC96) applied to SDSC96

CONS -1.8 1.53 0.72 -20.23 -25.17 0.9 0 1.3

EASY -1.91 1.35 1.2 -20.03 -26.15 -4.09 0 1.31

FCFS -0.41 3.03 1.6 -19.77 -21.74 5.12 0 2.62

Table L.2: Relative results for all workloads using the Pittsburgh approach in comparison to the standard
algorithms.

L.2 Results for Optimizing the Pittsburgh Approach using the
CTC Workload Trace and Applying the Resulting Strat-
egy to All Workloads

Workload AWRT[s] AWRT1[s] AWRT2[s] AWRT3[s] AWRT4[s] AWRT5[s] UTIL[%] fobj

CTC 56428.44 49639.2 56722.8 49541.76 59212.09 81268.33 66.99 723283.13

KTH 975402.8 69167.43 441969.85 1062178.3 2854982.6 1913462.2 71.7 2459553.73

LANL 15472.68 9504.32 11354.33 13883.95 20192.67 78641.74 57.27 140460.51

SDSC00 2009534 524137.67 1742827 1865873.2 3399389.2 5830000 78.55 12212684.7

SDSC95 48203.6 41557.26 48998.8 65675.8 66855.13 58308.31 62.95 611567.8

SDSC96 48472.03 42947.77 50244.96 94833.5 71477.81 100716.95 61.14 630457.57

Table L.3: Absolute results for all workloads using the Pittsburgh approach with the CTC optimized settings.
All AWRT values are given in seconds. The UTIL is given in %.

Strategy AWRT[%] AWRT1[%] AWRT2[%] AWRT3[%] AWRT4[%] AWRT5[%] UTIL[%] fobj[%]

SOPT(CTC) applied to CTC

CONS -5.79 15.47 11.22 1.98 -25.13 -135.61 0 14.18

EASY -6.09 16.83 12.7 1.54 -28.39 -155.11 0 15.58

FCFS 0.35 19.16 13.36 7.45 -14.41 -94.35 0 17.42

SOPT(CTC) applied to KTH

CONS -1223.96 -6.37 -446.11 -1794.24 -3668.64 -4423.73 0.3 -152.52

EASY -1240.92 -5.15 -452.96 -1840.01 -3721.61 -4674.16 0.3 -151.61

FCFS -699.85 50.63 -256.49 -964.66 -2080.5 -1959.88 0.3 -29.65

SOPT(CTC) applied to LANL

CONS -18.59 21.83 17.99 -32.48 -64.68 -301.95 0 20.63

EASY -24.37 19.95 14.05 -36.35 -74.96 -362.93 0 18.13

FCFS -3.56 30.05 27.77 -13.71 -39.94 -231.49 0 29.33

SOPT(CTC) applied to SDSC00

CONS -427.44 -4.99 -307.64 -557.15 -946.4 -1381.88 6.37 -82.21

EASY -1692.38 -273.54 -1224.57 -1799.54 -3746.14 -7792.75 7.21 -532.96

FCFS -38.8 73.5 -5.71 -88.3 -181.41 -258.36 1.66 53.69

SOPT(CTC) applied to SDSC95

CONS -2.17 8.32 -0.33 -23.17 -45.34 -42.98 0 5.71

EASY -2.64 8.68 -1.26 -24.81 -49.12 -47.44 0 5.71

FCFS 1.35 10.16 3.92 -16.84 -37.25 -27.35 0 8.25

SOPT(CTC) applied to SDSC96

CONS -1.66 4.22 -12.43 -12.39 -47.32 -33.61 0 -0.53

EASY -1.77 4.05 -11.89 -12.21 -48.48 -40.33 0 -0.52

Continued on next page



L.3. PITTSBURGH APPROACH OPTIMIZED FOR ALL WORKLOADS 215

Strategy AWRT[%] AWRT1[%] AWRT2[%] AWRT3[%] AWRT4[%] AWRT5[%] UTIL[%] fobj[%]

FCFS -0.27 5.67 -11.45 -11.96 -43.28 -27.91 0 0.82

Table L.4: Relative results for all workloads using the Pittsburgh approach with the CTC optimized settings
in comparison to the standard algorithms.

L.3 Optimization using the Pittsburgh Approach for all Work-
load Traces Together and Applying the Resulting Strategy
to All Traces.

Workload AWRT[s] AWRT1[s] AWRT2[s] AWRT3[s] AWRT4[s] AWRT5[s] UTIL[%] fobj

CTC 54903.84 50335.83 57967.01 48886.87 56486.14 65207.88 66.99 735226.35

KTH 106720.02 49919.10 76827.04 83329.44 198581.94 656675.48 71.92 806499.16

LANL 14076.94 9640.11 11561.56 12255.27 16235.06 61187.25 57.27 142647.30

SDSC00 1075764.3 56240.10 77709.24 107033.75 2409309.1 11800000 80.48 873237.96

SDSC95 47730.41 41745.63 49028.22 63608.21 62075.04 55079.82 62.95 613569.14

SDSC96 48252.75 43231.81 48721.36 94841.74 64658.85 93911.70 61.14 627203.48

Table L.5: Absolute results for all workloads using the Pittsburgh approach with the ALLOPT optimized
settings. All AWRT values are given in seconds. The UTIL is given in %.

Strategy AWRT[%] AWRT1[%] AWRT2[%] AWRT3[%] AWRT4[%] AWRT5[%] UTIL[%] fobj[%]

ALLOPT applied to CTC

CONS -2.93 14.28 9.27 3.28 -19.37 -89.04 0.00 12.76

EASY -3.23 15.66 10.79 2.84 -22.48 -104.70 0.00 14.18

FCFS 3.05 18.03 11.46 8.67 -9.14 -55.94 0.00 16.06

ALLOPT applied to KTH

CONS -44.86 23.23 5.07 -48.61 -162.13 -1452.48 0.00 17.20

EASY -46.71 24.11 3.88 -52.20 -165.82 -1538.43 0.00 17.50

FCFS 12.49 64.37 38.03 16.48 -51.67 -606.93 0.00 57.49

ALLOPT applied to LANL

CONS -7.89 20.71 16.49 -16.94 -32.41 -212.74 0.00 19.39

EASY -13.15 18.81 12.48 -20.36 -40.67 -260.18 0.00 16.86

FCFS 5.78 29.05 26.45 -0.37 -12.51 -157.92 0.00 28.23

ALLOPT applied to SDSC00

CONS -182.36 88.73 81.82 62.30 -641.63 -2904.31 4.06 86.97

EASY -859.52 59.92 40.94 -8.97 -2625.94 -15901.45 4.92 54.74

FCFS 25.69 97.16 95.29 89.20 -99.45 -626.53 -0.77 96.69

ALLOPT applied to SDSC95

CONS -1.17 7.90 -0.39 -19.29 -34.95 -35.07 0.00 5.40

EASY -1.63 8.27 -1.32 -20.88 -38.46 -39.28 0.00 5.40

FCFS 2.32 9.75 3.86 -13.17 -27.44 -20.30 0.00 7.95

ALLOPT applied to SDSC96

CONS -1.20 3.59 -9.02 -12.40 -33.27 -24.58 0.00 -0.01

EASY -1.31 3.41 -8.50 -12.22 -34.31 -30.85 0.00 0.00

FCFS 0.18 5.05 -8.07 -11.97 -29.61 -19.27 0.00 1.33

Table L.6: Relative results for all workloads using the Pittsburgh approach with the ALLOPT optimized
settings in comparison to the standard algorithms.



216 APPENDIX L. RESULTS FOR THE PITTSBURGH APPROACH

L.4 Optimization using the Pittsburgh Approach with a Par-
allel Rule Reduction using a Modified Fitness Function.

Workload AWRT[s] AWRT1[s] AWRT2[s] AWRT3[s] AWRT4[s] AWRT5[s] UTIL[%] fobj Nr

CTC 56067.5 49750.49 56705.27 49313.61 58276.98 80794.31 66.99 724325.94 1

KTH 104443.6 49287.33 73294.73 77453.37 197771.41 711198.66 71.92 786052.27 1

LANL 14123.25 9532.76 11251.01 12556.67 17037.52 62746.78 57.27 140331.68 1

SDSC00 1038476.1 55016.49 75688.93 105801.16 2420830 10700000 80.94 852920.63 23

SDSC95 47548.76 41440.64 48328.86 63698.29 64511.91 55912.5 62.95 607721.85 1

SDSC96 48285.55 42803.15 50095.46 96169.3 67244.83 95123.41 61.14 628413.34 1

Table L.7: Absolute results for all workloads using the Pittsburgh approach with a modified fitness function.
All AWRT values are given in seconds. The UTIL is given in %.

Strategy AWRT[%] AWRT1[%] AWRT2[%] AWRT3[%] AWRT4[%] AWRT5[%] UTIL[%] fobj[%]

SOPT(CTC) applied to CTC

CONS -5.11 15.28 11.25 2.44 -23.15 -134.23 0 14.06

EASY -5.42 16.64 12.73 2 -26.36 -153.63 0 15.45

FCFS 0.99 18.98 13.38 7.87 -12.6 -93.22 0 17.31

SOPT(KTH) applied to KTH

CONS -41.77 24.21 9.43 -38.13 -161.06 -1581.39 0 19.3

EASY -43.58 25.07 8.3 -41.46 -164.73 -1674.47 0 19.59

FCFS 14.35 64.82 40.88 22.37 -51.05 -665.62 0 58.56

SOPT(LANL) applied to LANL

CONS -8.24 21.59 18.74 -19.81 -38.95 -220.71 0 20.7

EASY -13.52 19.71 14.83 -23.32 -47.62 -269.36 0 18.21

FCFS 5.47 29.84 28.43 -2.84 -18.07 -164.49 0 29.39

SOPT(SDSC00) applied to SDSC00

CONS -172.57 88.98 82.3 62.74 -645.18 -2625.85 3.51 87.27

EASY -826.26 60.79 42.48 -7.71 -2638.98 -14418.32 4.39 55.79

FCFS 28.27 97.22 95.41 89.32 -100.4 -559.19 -1.34 96.77

SOPT(SDSC95) applied to SDSC95

CONS -0.78 8.58 1.04 -19.46 -40.25 -37.11 0 6.31

EASY -1.25 8.94 0.12 -21.05 -43.9 -41.39 0 6.31

FCFS 2.69 10.41 5.23 -13.33 -32.44 -22.12 0 8.83

SOPT(SDSC96) applied to SDSC96

CONS -1.26 4.54 -12.1 -13.98 -38.6 -26.19 0 -0.2

EASY -1.38 4.37 -11.56 -13.79 -39.68 -32.54 0 -0.19

FCFS 0.11 5.99 -11.11 -13.54 -34.8 -20.81 0 1.14

Table L.8: Relative results for all workloads using the Pittsburgh approach with a modified fitness function in
comparison to the standard strategies.

L.5 Optimization using the Pittsburgh Approach with a Par-
allel Rule Reduction using a Modified Selection Operator.

Workload AWRT[s] AWRT1[s] AWRT2[s] AWRT3[s] AWRT4[s] AWRT5[s] UTIL[%] fobj Nr

CTC 56027.08 49747.9 56646.56 49297.05 58213.22 80780.41 66.99 724065.26 3

KTH 104121.8 49496 73602.53 81098.88 199254.66 622160.67 71.92 789370.14 1

Continued on next page



L.5. PITTSBURGH APPROACH MODIFIED SELECTION 217

Workload AWRT[s] AWRT1[s] AWRT2[s] AWRT3[s] AWRT4[s] AWRT5[s] UTIL[%] fobj Nr

LANL 14098.34 9525.9 11230.6 12669.17 16963.31 62295.82 57.27 140181.42 4

SDSC00 1167466.1 54910.14 75939.59 106844.94 2650176.7 12700000 80.14 852859.82 5

SDSC95 47513.8 41425.32 48316.46 63451.78 64526.46 55800.5 62.95 607519.09 1

SDSC96 48285.55 42803.15 50095.46 96169.3 67244.83 95123.41 61.14 628413.34 1

Table L.9: Absolute results for all workloads using the Pittsburgh approach with a modified selection operator.
All AWRT values are given in seconds. The UTIL is given in %.

Strategy AWRT[%] AWRT1[%] AWRT2[%] AWRT3[%] AWRT4[%] AWRT5[%] UTIL[%] fobj[%]

SOPT(CTC) applied to CTC

CONS -5.04 15.28 11.34 2.47 -23.02 -134.19 0 14.09

EASY -5.34 16.64 12.82 2.03 -26.22 -153.58 0 15.48

FCFS 1.06 18.98 13.47 7.9 -12.48 -93.19 0 17.34

SOPT(KTH) applied to KTH

CONS -41.33 23.88 9.05 -44.63 -163.02 -1370.89 0 18.96

EASY -43.14 24.76 7.91 -48.12 -166.72 -1452.31 0 19.25

FCFS 14.62 64.67 40.63 18.71 -52.18 -569.77 0 58.39

SOPT(LANL) applied to LANL

CONS -8.05 21.65 18.88 -20.88 -38.34 -218.4 0 20.78

EASY -13.32 19.77 14.98 -24.42 -46.98 -266.71 0 18.3

FCFS 5.64 29.89 28.56 -3.76 -17.56 -162.59 0 29.47

SOPT(SDSC00) applied to SDSC00

CONS -206.42 89 82.24 62.37 -715.77 -3138.28 4.46 87.28

EASY -941.31 60.87 42.29 -8.77 -2898.47 -17147.58 5.32 55.8

FCFS 19.36 97.22 95.39 89.22 -119.39 -683.11 -0.34 96.77

SOPT(SDSC95) applied to SDSC95

CONS -0.71 8.61 1.07 -19 -40.28 -36.83 0 6.34

EASY -1.17 8.97 0.15 -20.58 -43.93 -41.1 0 6.34

FCFS 2.76 10.45 5.26 -12.89 -32.47 -21.87 0 8.86

SOPT(SDSC96) applied to SDSC96

CONS -1.26 4.54 -12.1 -13.98 -38.6 -26.19 0 -0.2

EASY -1.38 4.37 -11.56 -13.79 -39.68 -32.54 0 -0.19

FCFS 0.11 5.99 -11.11 -13.54 -34.8 -20.81 0 1.14

Table L.10: Relative results for all workloads using the Pittsburgh approach with a modified selection operator
in comparison to the standard strategies.



Appendix M

Results for the CCA Approach

M.1 Results for Optimizing the Cooperative Coevolutionary
Algorithm Approach for All Individual Workload Traces

Workload AWRT[s] AWRT1[s] AWRT2[s] AWRT3[s] AWRT4[s] AWRT5[s] UTIL[%] fobj

CTC 55290.58 49676.09 56522.7 48723.31 57488.07 74983.13 66.99 722851.67

KTH 93582.95 48433.73 73835.43 76801.6 163626.14 407069.22 71.92 779679.06

LANL 14068.43 9499.16 11274.9 12648.88 16591.92 62397.01 57.27 140091.23

SDSC00 1147231.3 55503.31 74149.63 100895.85 3180365.7 8550000 80.53 851631.65

SDSC95 47515.39 41345.24 48333.02 63677.45 64704.38 56030.24 62.95 606784.45

SDSC96 48500.5 45254.26 42769 98899.38 43133.18 70078.07 61.14 623618.57

Table M.1: Absolute results for all workloads using the CCA. All AWRT values are given in seconds. The
UTIL is given in %.

Strategy AWRT[%] AWRT1[%] AWRT2[%] AWRT3[%] AWRT4[%] AWRT5[%] UTIL[%] fobj[%]

SOPT(CTC) applied to CTC

CONS -3.66 15.4 11.53 3.6 -21.48 -117.38 0 14.23

EASY -3.96 16.76 13.01 3.17 -24.65 -135.38 0 15.63

FCFS 2.36 19.1 13.66 8.97 -11.08 -79.32 0 17.47

SOPT(KTH) applied to KTH

CONS -27.02 25.52 8.77 -36.96 -115.99 -862.38 0 19.95

EASY -28.65 26.37 7.62 -40.27 -119.03 -915.65 0 20.24

FCFS 23.26 65.43 40.44 23.02 -24.97 -338.22 0 58.9

SOPT(LANL) applied to LANL

CONS -7.82 21.87 18.56 -20.69 -35.32 -218.92 0 20.83

EASY -13.08 20 14.65 -24.22 -43.76 -267.3 0 18.35

FCFS 5.84 30.09 28.28 -3.59 -14.98 -163.02 0 29.51

SOPT(SDSC00) applied to SDSC00

CONS -201.11 88.88 82.66 64.47 -878.98 -2073.46 4 87.29

EASY -923.26 60.44 43.65 -2.72 -3498.33 -11476.18 4.87 55.86

FCFS 20.76 97.19 95.5 89.82 -163.28 -425.61 -0.83 96.77

SOPT(SDSC95) applied to SDSC95

CONS -0.71 8.79 1.03 -19.42 -40.67 -37.4 0 6.45

EASY -1.17 9.14 0.12 -21.01 -44.33 -41.68 0 6.45

FCFS 2.76 10.62 5.22 -13.29 -32.84 -22.38 0 8.97

SOPT(SDSC96) applied to SDSC96

Continued on next page

218



M.2. CCA APPROACH CTC OPTIMIZED 219

Strategy AWRT[%] AWRT1[%] AWRT2[%] AWRT3[%] AWRT4[%] AWRT5[%] UTIL[%] fobj[%]

CONS -1.72 -0.92 4.3 -17.21 11.1 7.04 0 0.56

EASY -1.83 -1.11 4.76 -17.02 10.4 2.36 0 0.57

FCFS -0.33 0.61 5.14 -16.76 13.54 11 0 1.89

Table M.2: Relative results for all workloads using the CCA in comparison to the standard algorithms.

M.2 Results for Optimizing the Cooperative Coevolutionary
Algorithm Approach using the CTC Workload Trace and
Applying the Resulting Strategy to All Workloads

Workload AWRT[s] AWRT1[s] AWRT2[s] AWRT3[s] AWRT4[s] AWRT5[s] UTIL[%] fobj

CTC 55290.57 49676.09 56522.7 48723.31 57488.07 74983.13 66.99 722851.67

KTH 108292.54 48799.17 79745.46 89594.31 207556.94 491038.29 71.91 806973.51

LANL 14589.25 9516.9 11299.66 13032.94 18724.38 66478.67 57.27 140367.63

SDSC00 1117446.3 55257.35 74705.76 107931.39 2574102.1 11900000 80.58 851396.57

SDSC95 48044.64 41587.63 48807.76 65009.24 66199.8 57974.46 62.95 611107.37

SDSC96 48413.38 42909.22 50161.03 94720.44 71173.48 100368.75 61.14 629736.33

Table M.3: Absolute results for all workloads using the CCA approach with the CTC optimized settings. All
AWRT values are given in seconds. The UTIL is given in %.

Strategy AWRT[%] AWRT1[%] AWRT2[%] AWRT3[%] AWRT4[%] AWRT5[%] UTIL[%] fobj[%]

SOPT(CTC) applied to CTC

CONS -3.66 15.4 11.53 3.6 -21.48 -117.38 0 14.23

EASY -3.96 16.76 13.01 3.17 -24.65 -135.38 0 15.63

FCFS 2.36 19.1 13.66 8.97 -11.08 -79.32 0 17.47

SOPT(CTC) applied to KTH

CONS -46.99 24.96 1.46 -59.78 -173.98 -1060.89 0 17.15

EASY -48.87 25.82 0.23 -63.64 -177.83 -1125.16 0 17.45

FCFS 11.2 65.17 35.68 10.2 -58.52 -428.61 0 57.46

SOPT(CTC) applied to LANL

CONS -11.81 21.72 18.38 -24.36 -52.71 -239.78 0 20.68

EASY -17.27 19.85 14.46 -28 -62.24 -291.33 0 18.19

FCFS 2.35 29.96 28.12 -6.74 -29.76 -180.22 0 29.37

SOPT(CTC) applied to SDSC00

CONS -193.3 88.93 82.53 61.99 -692.36 -2914.95 3.94 87.3

EASY -896.69 60.62 43.22 -9.88 -2812.39 -15958.08 4.81 55.87

FCFS 22.82 97.21 95.47 89.11 -113.09 -629.1 -0.89 96.77

SOPT(CTC) applied to SDSC95

CONS -1.83 8.25 0.06 -21.92 -43.92 -42.16 0 5.78

EASY -2.3 8.61 -0.86 -23.54 -47.66 -46.6 0 5.78

FCFS 1.67 10.09 4.29 -15.66 -35.91 -26.62 0 8.32

SOPT(CTC) applied to SDSC96

CONS -1.53 4.31 -12.25 -12.26 -46.7 -33.14 0 -0.41

EASY -1.65 4.13 -11.7 -12.07 -47.84 -39.85 0 -0.4

FCFS -0.15 5.76 -11.26 -11.83 -42.67 -27.47 0 0.93

Table M.4: Relative results for all workloads using the CCA approach with the CTC optimized settings in
comparison to the standard algorithms.



220 APPENDIX M. RESULTS FOR THE CCA APPROACH

M.3 Optimization using the Cooperative Coevolutionary Al-
gorithm Approach for all Workload Traces Together and
Applying the Resulting Strategy to All Traces.

Workload AWRT[s] AWRT1[s] AWRT2[s] AWRT3[s] AWRT4[s] AWRT5[s] UTIL[%] fobj

CTC 56052.04 49750.64 56705.38 49265.13 58260.82 80784.89 66.99 724327.88

KTH 104790.82 48774.28 74404.55 81371.64 208309.51 534709.22 71.92 785361.02

LANL 14148.26 9526.29 11256.31 12502.83 17268.45 62815.96 57.27 140288.17

SDSC00 1066988 55878.71 76360.73 103160.35 2371648.5 11900000 80.42 864230.01

SDSC95 47581.74 41379.79 48466.31 63629.56 64776.57 56497.53 62.95 607663.12

SDSC96 48285.38 42802.87 50095.36 96169.30 67247.64 95120.41 61.14 628410.15

Table M.5: Absolute results for all workloads using the CCA approach with the ALLOPT optimized settings.
All AWRT values are given in seconds. The UTIL is given in %.

Strategy AWRT[%] AWRT1[%] AWRT2[%] AWRT3[%] AWRT4[%] AWRT5[%] UTIL[%] fobj[%]

SOPT(CTC) applied to CTC

CONS -5.08 15.28 11.25 2.53 -23.12 -134.20 0.00 14.06

EASY -5.39 16.64 12.73 2.09 -26.32 -153.60 0.00 15.45

FCFS 1.02 18.98 13.38 7.96 -12.57 -93.20 0.00 17.31

SOPT(CTC) applied to KTH

CONS -42.24 24.99 8.06 -45.11 -174.97 -1164.14 0.00 19.37

EASY -44.06 25.85 6.91 -48.62 -178.84 -1234.12 0.00 19.66

FCFS 14.07 65.19 39.99 18.44 -59.10 -475.63 0.00 58.60

SOPT(CTC) applied to LANL

CONS -8.43 21.65 18.70 -19.30 -40.83 -221.06 0.00 20.72

EASY -13.72 19.77 14.79 -22.79 -49.62 -269.77 0.00 18.23

FCFS 5.30 29.89 28.39 -2.40 -19.67 -164.78 0.00 29.41

SOPT(CTC) applied to SDSC00

CONS -180.05 88.81 82.14 63.67 -630.04 -2918.03 4.13 87.11

EASY -851.69 60.18 41.97 -5.02 -2583.33 -15974.50 4.99 55.21

FCFS 26.30 97.17 95.37 89.59 -96.33 -629.85 -0.69 96.72

SOPT(CTC) applied to SDSC95

CONS -0.85 8.71 0.76 -19.33 -40.82 -38.54 0.00 6.32

EASY -1.32 9.07 -0.16 -20.92 -44.49 -42.87 0.00 6.32

FCFS 2.62 10.54 4.96 -13.20 -32.98 -23.40 0.00 8.84

SOPT(CTC) applied to SDSC96

CONS -1.26 4.54 -12.10 -13.98 -38.60 -26.18 0.00 -0.20

EASY -1.38 4.37 -11.56 -13.79 -39.69 -32.53 0.00 -0.19

FCFS 0.11 5.99 -11.11 -13.54 -34.80 -20.81 0.00 1.14

Table M.6: Relative results for all workloads using the CCA approach with the ALLOPT optimized settings
in comparison to the standard algorithms.


	Introduction
	I State of the Art
	Scheduling Systems
	General Framework and Notation
	Classification of Schedules
	Scheduling Complexity
	Single-Objective Scheduling
	Multi-Objective Scheduling
	Extended Notation for Multi-Objective Scheduling Problems
	Multi-Objective Optimization
	Theoretical Analysis of Multi-Objective Scheduling Systems
	Multi-Objective Optimization Techniques
	First Multi-Objective Scheduling Approaches

	General Design Process of Scheduling Systems
	Scheduling Policy
	Scheduling Objective
	Scheduling Algorithms


	Evolutionary Optimization
	Single-Objective Evolutionary Algorithms
	Different Encoding Techniques
	Selection
	Mutation of Object and Strategy Parameters
	Recombination of Object and Strategy Parameters
	Adaptation of Endogenous Strategy Parameters

	Multi-Objective Evolutionary Algorithms
	Non-Elitist Multi-Objective Evolutionary Algorithms
	Elitist Multi-Objective Evolutionary Algorithms


	Parallel Job Scheduling
	Machine Environment
	System Characteristics
	Scheduling Policy and Objective
	Scheduling Algorithms
	First Come First Serve (FCFS)
	List Scheduling
	Greedy Scheduling (Greedy)

	Evaluation
	Workload Models
	Workload Traces



	II Optimizing the Scheduling of a Parallel Machine
	Scaling of Workload Traces
	Precise Scaling of Job Size
	Precise Scaling of Number and Size of Jobs
	Adjusting the Scaling Factor

	Multi-Objective Scheduling Systems
	Solution Details
	Our Scheduling Objectives
	Used Workload Traces

	Main Development Steps
	Generating the Pareto Fronts for all Workloads
	Extraction of the Multi-Objective Evaluation Function

	Generating Appropriate Scheduling Strategies
	Development of a Greedy Scheduling Strategy
	Development of Rule Based Scheduling Systems


	Generation of the Pareto Front
	Exploring the Scheduling Solution Space
	Modifying the Sequence of Jobs in the Traces
	Mutation Operators
	Recombination

	Modifying the Job Sequence within the Waiting Queue
	Recombination
	Mutation
	Achieved Results

	Final Pareto Front

	Complex Evaluation Function
	Generation of a Representative Pareto Front
	Interpolation of a Single Pareto Front
	Distance between Two Pareto Fronts
	Transformation of Pareto Fronts
	Parameter Optimization using Evolution Strategies
	Transformation Results
	Pareto Front Reduction
	Results of the Transformation of the Reduced Pareto Fronts

	Generation of a Provider Preferences Function
	Region Based Specification
	Linear Objective Functions


	Scheduling Systems
	Adaptation of a Greedy Scheduling Strategy
	Parameter Optimization

	Rule Based Scheduling Systems
	Scheduling Features
	Detailed Rule Based Scheduling Concept
	Rigid Rule Based Scheduling Systems
	Scheduling Strategies based on Genetic Fuzzy Systems


	Evaluation
	Greedy Scheduling Strategy
	Rigid Rule Based Scheduling Systems
	Scheduling Strategies based on Genetic Fuzzy Systems
	Comparison of all Scheduling Strategies


	III Grid Scheduling
	Grid Scheduling
	Introduction to Computational Grids
	Problem Classification
	Evaluation of Load-Sharing in Grids
	Machine Configurations
	Workload Model
	Simulation Results

	Market-Oriented Scheduling
	Market Methods
	Economic Scheduling Model
	Economic Scheduling Algorithm
	Co-Allocation (Multi-Site Scheduling)
	Request and Offer Description
	Simulation and Evaluation


	Conclusion
	Bibliography
	Scaling of Workload Traces - Detailed Results
	Complete CTC Pareto Front
	Pareto Front After Transformation
	Reduced Pareto Front CTC
	Reduced Pareto Front After Transformation
	Results for the Standard Scheduling Strategies
	Best Solutions within the Pareto Fronts of All Workloads
	Results for Adapting a Greedy Strategy
	Greedy Strategy CTC Optimized
	Greedy Strategy Optimized for all Workloads

	Results for the Iterative Approach
	Iterative Approach Individual Optimization
	Iterative Approach CTC Optimized
	Iterative Approach Optimized for all Workloads

	Results for the Probability based Approach
	Probability based Approach Individual Optimization
	Probability based Approach CTC Optimized
	Probability based Approach Optimized for all Workloads

	Results for the Michigan Approach
	Michigan Approach Individual Optimization
	Michigan Approach CTC Optimized
	Michigan Approach Optimized for all Workloads

	Results for the Pittsburgh Approach
	Pittsburgh Approach Individual Optimization
	Pittsburgh Approach CTC Optimized
	Pittsburgh Approach Optimized for all Workloads
	Pittsburgh Approach Modified Fitness
	Pittsburgh Approach Modified Selection

	Results for the CCA Approach
	CCA Approach Individual Optimization
	CCA Approach CTC Optimized
	CCA Approach Optimized for all Workloads



