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Abstract

Autonomic provisioning of hosted applications in
Enterprise Data Centers must be investigated as more
and more business applications are executed in such
an environment. In this scenario, the multiplicity and
variability of software components and data to be dy-
namically deployed, interconnected and adjusted leads
to more complex system management. In parallel, all
customer requirements and constraints must be fulfilled.
These requirements and constraints are specified in cor-
responding Service Level Agreements (SLA). Protection
aspects are one important part of such agreements, as
in a shared, open infrastructure, perceived risks with
respect to loss of information confidentiality, integrity
and availability increase. Legislation and compensa-
tion mechanisms make it imperative for the Data Cen-
ter to acknowledge these perceived risks. Therefore,
robust application isolation mechanisms must be con-
sidered. However, potential drawbacks due to the used
protection mechanisms that might influence the over-
all system performance must be considered. In order
to initialize an autonomic provisioning process, a con-
cept for configuring the Data Center based on different
Levels of Isolation is presented. Customers and Data
Center providers can agree on the isolation guarantees
they expect given their individual preferences specifica-
tion between the perceived risks and the resulting costs
associated with the chosen Level of Isolation.

1 Introduction

The way Enterprise software is composed, delivered
and executed is currently changing. That is, the spe-
cific customer software systems are generated by com-
bining individual services of potentially different ser-

vice providers. Furthermore, the individual services
are provided by Data Centers [10], such that customers
access the individual services over the Internet. This
leads to the clear separation between the service con-
sumption and the service provisioning [28]. Note that
the service provider is not necessarily equivalent to the
software provider. In many cases, a service provider
and a software provider agree on certain conditions in
which the service provider can offer the different soft-
ware services to its customers.

The offered service is in most cases already a com-
position of lower level services. Resources are then dy-
namically allocated corresponding to the service spec-
ification and the customer requirements. However,
changing the resource allocation, the service compo-
sition or the service usage will inevitably result in the
customer or Data Center provider changing their per-
ception of risk regarding their potential for SLAs to
be violated. These effects combined with the high fre-
quency of new service requests and the dynamic of the
different services make the management of Data Cen-
ters more and more difficult. As suggested by Kephart
and Chess [16], ”the only option remaining is autonomic
computing : computing systems that can manage them-
selves given high-level objectives from administrators”.

A Data Center’s provisioning process must incorpo-
rates many constraints, service characteristics as well
as the objectives of the Data Center provider and the
objectives of the individual customers. One impor-
tant aspect that needs to be better automated sur-
rounds protection, security and isolation of hosted ap-
plication services. Here, the perceived risks of cus-
tomers, the available security mechanisms and the ser-
vice provider’s capabilities and objectives need to be
equilibrated. This process implicitly determines the
best trade-off solution between the risk of a customer
to lose some business critical data and the costs caused



by protecting the mentioned application and data. Re-
lations between information security and risk are being
researched today in many areas, for example within the
context of cyber-insurance [1, 2, 13, 27].

This paper introduces the Level of Isolation (LOI)
concept: a new approach to initialize an application
provisioning process in a Data Center that enables
the differentiations in perceived risks of different cus-
tomers. It provides a concrete mapping between iso-
lation guarantees offered to satisfy the perceived risks
of customers and the technical templates that config-
ure the Data Center’s infrastructure in order to imple-
ment the LOI agreed with the customer. Different LOI
configurations are related to different customer per-
ceptions of the trade-off between risk and LOI costs.
These costs here are qualitative approximations of the
operational costs associated with the selected technical
configuration. This is realized by specifying a Com-
partment data model as an architectural metaphor for
application isolation. High level Service Level Agree-
ments (SLAs) that include an agreed level of isolation
can be then used to initialize and manage the behavior
of an autonomic application provisioning process.

Section 2 describes the autonomic Data Centers and
related approaches in more detail. This is followed by
the description of the LOI concept in Section 4 and
architectural description in Section 5. In Section 6, we
discuss the merits and drawbacks of the LOI solution,
ending with a conclusion in Section 7.

2 Background

The constantly increasing demand for compute
power is a well-known and ongoing topic of research, as
discussed, for example, by Foster and Kesselmann [6].
Furthermore, the scheduling aspects to further improve
the efficiency of individual clusters is for example ad-
dressed by Franke et al. [7, 9]. The majority of the de-
veloped methods and concepts focus on increasing the
compute power as the main criterion that drives the
development. Beside the goal to increase the compute
power of Data Centers, Franke et al. [10] have shown,
that the autonomicity and autonomy of such system is
of highest importance as only such systems can provide
the necessary reliability and failure robustness.

As described by Franke et al. [8], business appli-
cations require a well-defined statement of security
throughout the entire execution, as well as flexibility.
These security requirements are currently addressed in
a limited way in the scientific domain. However, some
scientific projects currently start to also address the se-
curity demands of businesses such that the correspond-
ing outcome could be applied in the scientific as well

as in the business scenario, see Yang et al. [29].
In their study, Yang et al. [29] have identified isola-

tion as being one of the key issues for securing the Data
Center processing. Isolation is a property of an entity
(system, application, component, program or process),
that defines its ability to perform reliably regardless of
the behavior of other entities. The theory of Isolation
in information systems goes back to the late 1960’s and
1970’s, where the Virtual Machine and Virtual Machine
Monitor were introduced to support resource sharing of
largescale computers such as the IBM 370 [22]. Isola-
tion was achieved by multiplexing accesses to the phys-
ical network and machinery, making one physical ma-
chine appear to be many. Since then, this basic model
of isolation has been adapted and extended in various
forms including Operating System Virtualization, Vir-
tual Private Networks, Transactions, Virtual Disks and
Virtual Memory. However, Data Center isolation to-
day entails having separate physical machines per cus-
tomer, which will not scale with the expected increase
in customers and concurrent dynamic resource require-
ments.

In general, a customer’s concerns regarding the pro-
tection of its hosted applications and data in a Data
Center can be addressed in many ways. For example,
some physical firewalls can be used to clearly discon-
nect dedicated servers running applications of different
and maybe competing companies. As one can see, the
different protection approaches correspond with differ-
ent costs necessary to implement the specific protection
mechanism. Thus, different customers at data centers
will have different perceptions of the best trade-off so-
lution between a high level of security and the related
costs. Some research has been done in the area of mul-
tilevel security, see for example Foley et al. [5] or in the
area of IT business outsourcing, e.g. Karabulut [14].
However, these research frameworks do not offer com-
prehensive solutions for the handling of trade-offs, al-
ternatives and technical configurations.

In order to establish a contract between the service
provider and the customer in many business environ-
ments, the customers still need to sign paper-written
contracts that clearly specify the provision of specific
services and the corresponding behavior rules and costs
for the service consumers. This becomes a bottleneck
as the number of customer requests per time interval
is constantly increasing. Thus, automatic mechanisms
need to replace the manual negotiation and specifica-
tion of the agreements. The specification and usage of
Service Level Agreements (SLA), see for example Keller
and Ludwig [15] or Ludwig et al. [21], that can auto-
matically be evaluated by a system is already estab-
lished. However, the application of such SLAs is still



limited to scientific applications. That is, the SLAs
mainly specify the compute power needed to perform
certain tasks. The SLAs in the business case must ad-
dress additional requirements. Here, we see a clear de-
mand for protection requirements that are poorly ad-
dressed in the existing approaches. Ludwig et al. [20]
investigated the usage of templates for the SLA spec-
ification as well as for the corresponding provisioning.
However, the authors do not investigate the implica-
tions on the protection or security aspects and the cor-
responding provisioning methods.

Additionally to the specification of SLAs, the negoti-
ation between service providers and service consumers
need to be automated. Again, driven by scientific ap-
plications, some approaches for negotiation protocols
exists, see for example Li and Yahyapour [17, 18, 19].
However, these attempts again focus on the computa-
tional requirements for certain services and omit the
customer’s protection and security concerns.

In this paper, we present a systematic approach to
define possible Level of Isolation and suggest a way to
include them into SLAs and the corresponding negoti-
ation protocols. This enables the data center manage-
ment to automatically and autonomously establish the
necessary contracts between the service customers and
providers.

3 Analysis of Potential SLA Violations

This section defines a structural model of Data Cen-
ter components used to analyse potential SLA violation
sources and targets. A SLA violation is any malicious
or accidental occurrence in the Data Center that dis-
rupts the fulfilment of one or more SLA terms. These
may be driven by physical or logical entities in the Data
Center. This is used to classify the different types of
isolation mechanisms that could be employed to reduce
the possibilities of these violations. We define a Data
Center structurally with respect to its Participants and
Managed-Elements. Participants are human or organi-
zational entities that include the roles of Administra-
tor, Customer and User. Managed-Elements are en-
tities that provide functionality to the set of Partici-
pants. Figure 1 illustrates the structural dependencies
between different types of Participants and Managed-
Elements in a simplified Data Center instance.

The Data Center serves several Customers, which
might access different entities in the Data Center via
the Internet. The Data Center’s facilities may con-
sist of several Buildings, where each Building houses
different, individual network Routers that act as gate-
ways to different Network Domains. Within each
Network Domain are multiple Machines, which may

Figure 1. Illustration of Data Center Entities

be physical Hardware Machines or Virtual Machines.
Each Machine then hosts one or more Software Ele-
ments, including Application Servers, Filesystems and
Databases, which subsequently contain Processes, Files
and Data.

Using the above description of entities in the Data
Center, Table 1 provides a description and classification
of potential SLA violations.

Hierarchical dependencies between violations are
also implied by the listing in Table 1; for example,
damage to facility entities will potentially lead to dam-
aged Hardware, hence corrupted Software and hence
lost Data. Therefore, depending on what infrastruc-
ture elements two different customers share to support
their separate applications, the individual risk of SLA
violations varies.

4 The Level of Isolation Concept

This section proceeds to explain the Level of Isola-
tion (LOI) concept. The basic idea follows the propo-
sition that the isolation guarantee offered by a Data
Center for a particular application should be relative
to the customer’s perceived risk of interrupted service
as a result of another customer’s application and allo-
cated Managed Elements failing or acting maliciously.

The negotiation of a SLA between the customer and
the Data Center provider is normally a multi-step pro-
cess in which many functional and non-functional pa-
rameters are addressed. The customer and the Data
Center provider negotiate the appropriate Level of Iso-
lation and the corresponding costs. The perceived risks
of the customer will in many cases directly lead to an
LOI. However, the customer needs to implicitly deter-
mine the best trade-off between the avoidance of his
perceived risk by choosing an appropriate LOI and the
related costs caused by the specific LOI.



Entity
Type

Examples Potential Vio-
lation

Participants:
people or
organizations
with priv-
ileges that
allows access
to services
of the Data
Center as
specified in
SLAs

Administrators,
Customers,
Users, Software
Vendors

May abuse priv-
ileges in order to
gain knowledge
about other
Participants’
data and appli-
cations, or block
their access

Facilities:
physi-
cal, non-
computational
entities that
enclose
Hardware
and provide
access to
utilities

Buildings,
Rooms, Server
racks, Cabinets,
Cables

Physical dam-
age may lead to
loss of multiple
items of Hard-
ware and hence
services

Hardware:
physical,
compu-
tational
entities that
provide
processing,
storage and
networking

Servers, Work-
stations, Hard-
drives, Tape-
drives, Routers

Failure or de-
structions leads
to unavailability
of software

Software:
executable
programs,
scripts, pro-
cedures and
rules that
provide ap-
plication
and platform
functionality

Application
servers,
Database
management
systems, Oper-
ating system,
Virtual ma-
chines

Software may
contain flaws
or be compro-
mised, causing
alterations in
normal behavior
that corrupt
and make data
unavailable;
this may be
propagated to
applications of
other customers

Data: series
of bits used
to store and
transport
information
digitally

Program files,
Documents,
Models, Person-
nel information,
Catalogues,
Certificates,
Namespaces

Corrupted
data provides
inaccurate in-
formation used
to perform cal-
culations, make
predictions

Table 1. Description of Data Center Entities
and their SLA violation threats

The overall process of negotiating the LOIs and the
corresponding system configuration should remain rel-
atively transparent to an autonomic application provi-
sioning process that schedules, deploys, disables, mi-
grates and adjusts resources allocated for the applica-
tion within minimal human supervision. While differ-
ent customers will choose different sets from this set
of hosted applications, they may also show variation
in their relative perceived risks. This is the case for
which the LOI concept has been developed. There are
two main aspects of the concept: (1) the idea of includ-
ing LOI terms in a SLA negotiation process, and (2) a
generalized Compartment model that encapsulates the
deployment and runtime of a single application under
the governance of a single SLA.

4.1 Introducing the Level of Isolation to
SLAs

In the context of application hosting, a SLA con-
tains a collection of measurable terms that represent
guarantees provided by the Data Center to a cus-
tomer. Note, an SLA typically consists of many other
additional terms between customer and Data Center
provider. In the Data Center scenario, guarantees typ-
ically refer to response times, storage capacities, peri-
odic costs and availabilities. An autonomic provision-
ing process would use these terms to modify its behav-
ior with respect to selection and adjustment of infras-
tructure resources in the Data Center’s fabric. We now
introduce the LOI as an additional term in a SLA, rep-
resenting an agreed isolation guarantee. This LOI term
is associated with a quantitative approximations of the
related cost of the technical operation associated with
providing the isolation guarantee.

We have identified seven LOIs, based on the entities
illustrated in Figure 1. Figure 2 now enhances Figure 1
to depict an exemplary Data Center with two Customer
SLAs, configured with at least one instance of each of
the LOIs we have identified.

While Figure 2 illustrates a number of conceivable
physical and virtual ways of implementing isolation, we
only go to the extreme of having applications housed
in different buildings, which could be the case for very
critical, sensitive applications. The 7 LOIs we iden-
tify are exemplary, as there could be any number of
options offered by a Data Center, depending on their
resources, technical knowledge and scope of business,
but represent in our opinion a reasonably comprehen-
sive classification of possibilities. Our naming of the
different LOIs starts with the isolation level 1 which
has the highest security risk associated with the lowest
cost and ends with LOI 7 that represents the isolation



Figure 2. Reference architecture for the LOI
concept

level that provides the best security protection mech-
anism but also leads to highest implementation costs.
Furthermore, we establish exact specifications for iso-
lation levels that are stored as templates accessible to
a provisioning service.

LOI 1- Naming Isolation: objects and processes
are associated with a namespace unique to the cus-
tomer but may be stored in the same filesystem,
use same server software instance and executed in
same memory space; for example, consider host-
ing webpages on the same application server, as
depicted in Figure 2. Royon et al. [26] present
an architecture for a Virtualized Service Gate-
way that implements this concept, such that ap-
plications in different namespaces cannot see each
other; Risks are highest as failure or compromise
of one database or software instance affects many
customers; Costs are lowest as the same applica-
tion instances and physical machines can be used
to support the objects and processes of several cus-
tomers, given the capacities of the software and
hardware;

LOI 2- Object Isolation: objects are placed on a
separate disk partition of a machine but processes
execute in the same physical and logical memory
space as processes of other customers. Figure 2 de-
picts this as a database and an application running
as separate instances as opposed to the depiction
of LOI 1. Disk partitioning is a very common-
place technique for isolation and is also used for
gaining performance advantages as presented by
Ghandeharizadeh et al. [11], where they partition
using a multiplexing technique. Linux’s chroot
is also an example of this pattern, as it logically
changes the root directory of a disk and protects

access to files outside of the paths under this new
mount point. Risks are high, as there is a mech-
anism for protecting against propagation of data
compromise but not against execution or machine
failure; Costs are low as physical resources are still
shared and the partitioning mechanism is simple
and does not add significantly to the overhead;

LOI 3- Virtual Network Isolation: processes
and objects can only be accessed and interacted
with over a reserved [virtual] network interface,
by multiplexing using encryption over the same
physical network interface. Figure 2 shows the
multiplexing of the shared Internet gateway
leading from Building 1. Each customer’s com-
partment would therefore communicate using
a totally different logical subnet, interface and
IP address. This method is implemented by
Virtual Private Networks (VPN), where various,
flexible models for provisioning and resource
management have been proposed, such as by
Duffield et al. [3]. Risks are lower than for LOI 2
as there is better protection of the customer’s
confidentiality, integrity and access control but
fail-independence and non-interference are still
not guaranteed; Costs are higher than for LOI 2
as there is no necessity to use separate hardware,
although the computation may be increased with
the additional, computational overhead of en-
cryption, assuming a resilient keylength is chosen.
Nevertheless, encryption overheads are becoming
more and more negligible, with faster algorithms,
implementation in specialized hardware and more
powerful machines;

LOI 4- Virtual Machine Isolation: process and
objects are executed and stored in a separate logi-
cal memory space and partition of a machine. Fig-
ure 2 shows one physical machine being shared by
the processes and objects of two customers, each
running in a dedicated Virtual Machine (VM).
VMs have already been introduced as underlying
the general theory of isolation above, but there are
many more products such as VMware and XEN
that implement this pattern for commodity ma-
chines. Matthews et al. [23] report on a compari-
son of performance isolation properties of various
types of Virtual Machine technologies, comparting
the performance impact that a malicious VM may
have on another, where they have the same host.
In that these results show some variance in re-
sponse to stress test due to architectural difference,
we would advise finer granularity of this particu-
lar LOI into classification by Full-Virtualization,



Para-virtualization and OS Virtualization. The
results showed that Full-Virtualization was capa-
ble of providing true performance isolation and
Para-Virtualization was the most susceptible to
malicious stress from co-guest VMs. Risks lower
than for LOI 3 as the propagation of failure or
compromise of one Virtual Machine is difficult,
without significant effort and privileged access as
reported by Ormandy [25]; Costs are higher than
for LOI 3 as using these solutions incorporates
having sufficient licenses for the software, as well as
the additional computational requirements placed
on the underlying physical machines.

LOI 5- Hardware-Machine Isolation: processes
and objects of customer are stored on individ-
ual physical machines or on physically, separated,
stand-alone computational units (such as Blade
Servers), reserved for sole access by the customer
and possibly an appointed administrator. Figure 2
shows this level as the processes and objects of
a single customer being hosted by a single, dedi-
cated physical machine. Risks are lower than for
LOI 4 as physical isolation is used and machine
failures are easier to isolate, although there are
cases where viruses and attacks can be propagated
over a shared, physical network; Costs are higher
than for LOI 4 when considering that a data cen-
ter may have 10s of 1000s of customers and users,
as well as additional machines for fail-over and
archival.

LOI 6- Physical Network Isolation: processes
and objects of customer are stored on a physi-
cal machine reserved only for that customer and
is also connected to a physical gateway reserved
also for the customer, as shown in Figure 2. This
is usually requested by premium customers that
can afford to lease their own backbone with the
provider. Risks are lower than for LOI 5 as this
is almost perfect operational isolation; Costs are
higher than for LOI 5 as the customer demands an
additional network of machines to be maintained.

LOI 7- Location Isolation: the resources reserved
for the customer are stored in a separate, physi-
cal room or building e.g. in Building 2 in Fig-
ure 2. Risks are lowest as there is no interfer-
ence or dependence on other customers - this is
the ultimate in isolation in the context of hosting,
as the customer’s objects and processes are com-
pletely sealed off from others; Costs are highest as
an entire physical space and utilities are dedicated
to customer, limiting the data center’s ability to
make best usage of its utilities;

Each LOI represents a different configuration in re-
sponse to perceived risk of SLA violation due to re-
source sharing. At a high level of abstraction, we
can state that the same basic isolation policies and
maintenance protocols are implemented using different
assumptions, mechanisms and hence offering different
guarantee levels of protection. This satisfies the rule
that the cost of security should be commensurate with
the calculated risk.

4.2 Generalized Compartment Model

This section introduces Compartments as the archi-
tectural metaphor for isolation used to realize the LOI
concept. Figure 3 depicts model of a Compartment
in relation to Managed-Elements, SLAs, LOI terms,
Gateways (physical or logical access points) and Par-
ticipants. The model is then described, at the same
time establishing a set of security and design principles
for autonomic provisioning with isolation requirements:

Figure 3. Compartment model to support LOI
concept

Firstly, the Data Center itself is representative of
the top-level or root Compartment, where each Com-
partment maintains a registry of its Managed-Elements
including other (sub) Compartments. From a soft-
ware engineering perspective, all Compartments have
an inheritance relationship with the Managed-Element
class, and are modeled as specializations of Managed-
Elements with containment and isolation capability.
Note that encapsulation, containment and isolation are
used seemingly interchangeably but represent different
aspects of the Compartment description: containment
refers to its ability to maintain a registry or spatially
contain Managed-Elements, encapsulation refers to the
property that Managed-Elements in a Compartment
cannot be externally referenced by name without some
reference to the encapsulating Compartment and isola-
tion maintains the operational property that has been
introduced throughout the paper. Returning to the
engineering aspect of Compartments, in that they are



subclasses of the Managed-Element class, Compart-
ments implement the management interface below -
noting that for Compartments, the operations are con-
sidered in an aggregate sense:

– init: initializes the instance of a Managed-
Element/ Compartment with a set of configura-
tion variables

– start: deploys the Managed-Element/ Com-
partment, creates a registration in the registry
of its encapsulating Compartment (i.e. sub-
Compartments are supported) and makes it avail-
able for usage

– stop: disables the availability of the Managed-
Element/ Compartment but does not remove it
from the appropriate registry

– terminate: removes the properties and state of
the Managed-Element from the appropriate reg-
istry

– check-health: checks predefined parameters of
a Managed-Element’s state for compliance with a
set of terms defined in a governing SLA

– set-config: adjusts the configuration of a
Managed-Element to an updated set of variables

Secondly, multiple Compartments provide the same
logical operational interface but vary with respect to
their internal implementation and guaranteed protec-
tion against SLA violation, in accordance with the LOI
stated in the governing SLA. Managed-Elements iso-
lated by the same Compartment are governed by the
same SLA and share the same referential namespace.
Encapsulation in this context suggests the following
security principles, within the extremes of the LOI’s
guarantee of protection against SLA violation:

– Confidentiality: data maintained by Managed-
Elements in one Compartment cannot be read out-
side the Compartment without possession of a se-
cret stored within the Compartment

– Integrity: operations performed on data main-
tained by Managed-Elements in a Compartment
must be verifiable with keys known and trusted in
the Compartment

– Access control: access to operations on
Managed-Elements in a Compartment from exter-
nal Managed-Elements or Participants, via their
interconnected Gateways, can only be granted if
there is an explicit Policy that permits this oper-
ation

– Fail independence: the failure of Managed-
Elements in a Compartment A do not cause the
Managed-Elements of another Compartment B to
fail, given that A ∩ B = ∅ holds

– Non-interference: data exchanges and interac-
tions between Managed-Elements in a Compart-
ment cannot be externally monitored, unless there
is an explicit Policy that allows notifications and
alerts to be propagated externally

As Compartments are instances of Managed-
Elements, they may contain other Compartments, rep-
resentative of a spatial or logical topological orienta-
tion. Compartments therefore provide the additional
management operations addElement, removeElement,
and getElement in order to add, remove, or get certain
Managed-Elements.

Each Compartment provides one or more Gateways
with explicit Policies that restrict entry and access
to the Compartment and Managed-Elements respec-
tively. These compartment oriented Policies are as-
sumed to be of the format <subject, target, func-
tion, constraint>:

– subject: either a Managed-Element or Partici-
pant that initiates an access request

– target: a Managed-Element targeted by an access
request

– function: the operation or action on the target’s
interface or state

– constraint: a constant or logical expression that
defines under what conditions the subject can
perform the function on the target

With reference to Figure 1, different types of Com-
partments can be compared when making provisioning
decisions. For example, two different Customers may
want to have the same application and data hosted but
request and pay for different facilities. Customer 1,
with a very high perceived risk might go to the ex-
treme of demanding an exclusive Building or Room
in the Data Center to be reserved for providing the
execution environment for their application processes
and Data. Customer 2 might however be satisfied to
pay a reduced price for having a software Virtual Ma-
chine represent the encapsulation of its execution envi-
ronment. There are clearly two different extremes for
specifying and guaranteeing isolation, but they can be
abstractly treated in the same manner. That is, regard-
less of if Compartments are physical, logical or virtual
(i.e. simulating physical using logical methods), a top-
level provisioning process performs only the operations
specified in their Managed-Element or Compartment



class interfaces. The inner-workings of the Compart-
ment, in response to different provisioning actions, are
based on the type of Compartment instance affiliated
with the respective LOI. The next section proceeds to
explain the provisioning process that acts on the set of
Compartments in the Data Center.

5 Technical Realization

This section proceeds to define the technical sys-
tem architecture for realizing the LOI concept using
the Compartment model. In doing so we describe how
a set of decision-making components use the LOI terms
in an SLA and the Compartment model to implement
an autonomic provisioning process. According to Lud-
wig et al.[20], a provisioning process - in particular one
that is automated and agreement-driven - (1) identi-
fies the parts of a SLA which are relevant for supplying
resources, (2) derives quantities for different resource
types, determines and outlines alternative resource as-
semblies that might be used, and (3) compiles a pro-
visioning plan detailing the required resources, their
configuration, and their provisioning. The technical
architecture we present, supports such a process by
manipulating instances of the Compartment model de-
fined in Section 4.2. A Compartment can be provi-
sioned after a Customer and the Data Center have ne-
gotiated and reconciled differences between what SLA
violation risks the Customer perceives, what the Cus-
tomer is prepared to pay and what technical infrastruc-
ture options the Data Center can provide at the time
of offering. With reference to the 7 LOI configura-
tions proposed in Section 4.1, the technical infrastruc-
ture options would result in 7 classes of SLA templates
and 7 corresponding Compartment configuration tem-
plates. Note that there may be other templates avail-
able for selecting specific software service product fam-
ilies, again depending on the needs of the Customer.
In addition, to support the autonomic execution of the
entire process, we propose the inclusion of three addi-
tional templates that define the autonomic strategies
employed by the decision-making components. The in-
terfaces for loading these strategy templates are indi-
cated in Figure 4 for (A) Negotiation, (B) Infrastruc-
ture resource selection and (C) Incident response re-
spectively. We however do not present any details on
these strategies at the moment.

The above-mentioned SLA, Compartment configu-
ration and strategy templates are stored and instanti-
ated by their respective decision-making components.
However, the component with the highest storage de-
mands is what we refer to as the Infrastructure Registry
and Compartment Manager, see Figure 4.

Figure 4. Simplified system architecture for
autonomic provisioning

A SLA Template could be based on the schema spec-
ified by WS-Agreement [24], where one of the guaran-
tee terms in the schema could be reserved for specify-
ing the eventually agreed LOI. In addition, the con-
text section of their schema would be reserved for
including the 2 Participants that have agreed to the
terms in the SLA (recall the conceptual model in Fig-
ure 3). A Compartment configuration template de-
fines a set of Managed-Element descriptions and de-
ployment procedures, according to an agreed specifi-
cation. For example, the Smart Frog framework [12]
provides technology for describing distributed software
systems as collections [i.e. Compartments] of cooper-
ating components [i.e. Managed Elements], as well as
their activation and management. In order to support
management and activation, each machine in the Data
Center’s infrastructure should be equipped with very
simple software agents, which we refer to as Provision-
ing Daemons in Figure 4, that run and listen in the
background, awaiting commands from the Provision-
ing Service. Each Provisioning Daemon has platform
specific logic installed for executing the specification of
Compartment configuration templates according to the
level of isolation (LOI).

We now proceed to describe the technical function-
ality of each component of the architecture, as depicted
in Figure 4. For each component, we describe its basic
purpose, followed by a description of its basic inputs,
processing, and outputs.

Autonomic Provisioning Service: this is the main
component in the architecture for making infrastruc-
ture component selection based on SLAs, integrating



the Compartment configuration templates and enact-
ing the resultant deployment specification of the Com-
partments to be activated. It hence provides an inter-
face for negotiation between the customer and the data
center administrator.

INPUTS : a Customer provides a set of service re-
quirements with SLAs, as in labels (1) of Figure 4,
where SLA’s are associated with one or more ser-
vices and define agreed costs and guarantees (e.g.
LOI) per service;

PROCESSING : the service determines the compart-
mentalization required to achieve the SLA, la-
belled as (3) in Figure 4; an administrator may
be involved at this stage in order to load the Ne-
gotiation Strategy using interface (A);

OUTPUTS : the output is a selected Compartment
configuration template

Infrastructure Registry and Compartment
Manager: this large, critical component provides a
common management interface (INF-IN and INF-OUT)
to the set of heterogeneous infrastructure resources. In
addition, this maintains all compartment schedules la-
beling them as active or inactive, along with their tem-
plates.

INPUTS : the first input to this component would be
the query by the provisioning service to its re-
source registry, as shown in label (2) of Figure 4.
Secondly, the provisioning service passes compart-
ment configuration templates as shown in label (4)
of Figure 4;

PROCESSING : a query of the resource registry is per-
formed to determine their capability, capacity and
availability. This may be assisted by the Selection
Strategy loaded by an administrator via interface
(B). Secondly, the major processing following la-
bel (4) in Figure 4 is the allocation of resources for
the compiled compartment templates.

OUTPUTS : returns available resources, again de-
picted by interaction (2) of Figure 4.

Monitoring: this is a passive set of components that
collect information about the infrastructure’s state and
capacity, and pushes this information to the Provision-
ing Service, such that migration or resizing decisions
can be made e.g. due to failures.

INPUTS : low level events from the Provisioning Dae-
mons are collected. The creation of a new Com-
partment, as triggered by label (4) of Figure 4, is
also an example of an event.

PROCESSING : label (5) of Figure 4 shows the fil-
tering of lower level information and creation of
higher-level health check and compliance events,
depending on the types of applications hosted by
the data center. This may happen in parallel to
the Customer using the compartment, as indicated
by the duplication of label (5).

OUTPUTS : health check and compliance events
of form <compartment, LOI, hw-flag>, where
flag indicates whether or not the current physical
host is in a healthy state. Label (6) of Figure 4
shows such an event being sent to the provisioning
service.

In the following, we add some technical notes about
the Compartment lifecycle and the provisioning pro-
cess. Firstly, the setting up, instantiation and activa-
tion of a Compartment includes enabling roles, access
control lists and other special configuration parame-
ters on the physical hosts. When the compartment is
completely initialized and activated (this may be based
on an agreed schedule), a service endpoint to its Gate-
way is generated, customized for the customer and re-
turned via some online or offline medium. Secondly,
in that a Compartment is instantiated per SLA as op-
posed to per Customer, a customer may have multiple
compartments and may change the SLA on an exist-
ing compartment. This may include changing the LOI
of one or more components in the original agreement,
resulting in possible migration and readjustment of
the Managed-Elements supporting the Compartment.
This may also have an impact on other Compartments
from different customers; for example, a decision to
support a customer A at LOI 6 may result in moving
another customer B’s application components at say
LOI 3 from one machine to another to accommodate
customer A. Note that there my also be specific admin-
istrators assigned to dealing with specific customers.
Even for LOI 7, this would imply that only they carry
the key to the particular location; For example, the
RFID key of their entry card is associated with access
rights to the room and case.

6 Discussion

In the seminal paper from Kephart and Chess in-
troducing the Vision of Autonomic Computing [16],
they identify four key objectives: (i) self-configuration,
(ii) self-optimization, (iii) self-healing and (iv) self-
protection. We discuss the LOI concept and Compart-
ment model in the context of these four objectives, with
the aim to validate the technical architecture for auto-
nomic provisioning that we have proposed.



Self-Configuration refers to the automated config-
uration of components and systems based on high-level
policies. As the LOI terms are mapped to specific,
concrete Compartment templates with specifications
of Managed-Element deployment steps, achieving self-
configuration is an inherent property of the concept. It
requires a significant effort to develop the initial Com-
partment specifications, but, once this is completed,
the task of instantiating and activating Compartments
is performed by the autonomic provisioning service.

Self-Optimization refers to the continuous, system-
atic improvement of performance and efficiency. Main-
taining logs of transaction histories and accounting
data are critical throughout the Data Center. Instances
of the compartment templates can be used as instru-
ments for keeping track of where specific customer ob-
jects and processes are currently running, what col-
lective resources they have consumed and what opera-
tional conditions they have been subjected to. In doing
so, optimization strategies can be developed per Com-
partment, as well as across the Data Center.

Self-Healing detection and repair of localized soft-
ware and hardware problems. During monitoring, us-
ing the technical architecture described in Section 5,
there may be states reached where a system’s health
check fails, but, as a result of the agreed LOIs, across
the set of customer compartments, this reduces the
number of possible recovery scenarios that need to be
determined. Furthermore, using our solution, the Data
Center provider can make the temporary decision to
sustain risks and liabilities during a critical condition
such as node failure. Such decisions should be guided
by the agreed compensation costs in the respective
SLAs, for responding to data center attacks, failures
or mischances. This leads to another trade-off decision
for the provider, where he has to select an application
in case there is the need to perform some hot fixes.

Self-Protection refers to automatic alerts and de-
fense against malicious attacks and propagating fail-
ures. With the LOI concept, quantitative approxima-
tions of cost and risk are mapped to specific, techni-
cal protection mechanisms, procedures and constraints,
such that automated support for negotiation is possi-
ble, without an opportunity for misunderstanding and
violation of compliance. Our estimates of cost and
risk are trends based on intuition and experience with
managing different system configurations. There are
however many other factors including number of com-
ponents, size of database, type of software and machine
specification that will also cause different weights to be

considered in the resource selection decisions. Never-
theless, we see the inclusion of security concerns in the
automatic negotiation process and explicit inclusion in
the SLAs as a key advantage.

7 Conclusion

We have shown how to include concerns of applica-
tion hosting costs and perceived risks of SLA violation
into the process executed by an autonomic provisioning
service. The autonomic provisioning service is still able
to act autonomously, maintain the agreed risk to the
isolation of the customer’s application and give them
the resource usage that they agreed to.

In order to support this concept, we have defined a
set of concrete isolation level specifications, an abstract
Compartment object model and a technical architec-
ture, which can be implemented using various existing
and emerging technologies. These have been packaged
as 7 isolation configurations that show an inverse de-
pendency between provisioning costs and SLA viola-
tion risks. This enables the establishment of negotia-
tion strategies based on reconciling conflicts between
these terms in the SLA offers exchanged between Data
Center providers and Customers.

Other foreseen benefits include a means for simple
accounting per compartment, as resource usage may be
distributed, as well as keeping track of where objects
and processes belonging to one customer are currently
physically hosted. Secondly, a single management com-
ponent can be used to manage different types of com-
partments, unlike the state of the art today that focus
mainly on managing large amounts of Virtual Machines
and Virtual Centers or uniformed clusters.

Future work includes the integration of performance
concerns in the decision process, such that we will pro-
ceed to a better estimation of resource requirements,
costs and returns. Secondly, migration is an impor-
tant topic in data center management but there is not
a large amount of work on migration strategies and
how to go about organizing extensive data center re-
organization. We believe that the LOI concept and
Compartment model provide a framework for better
enabling the realization of such strategies.
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