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Abstract—This paper reports on a case study on analyzing,
structuring and re-using real-time control algorithms which
represent a significant amount of intellectual property. As a
starting point, legacy code written in ADA together with a
Windows-based testing framework is available. The goal is to
migrate the code onto a real-time multi-core platform taking
advantage of technological progress.

We present a tool-supported three-step approach for such
legacy control software: identifying and isolating the control
algorithms, preparing these algorithms and their information
exchange for execution within a modern execution framework for
Linux written in C++, and validating the solution by a) performing
regression testing to ensure partial correctness and b) validating
its real-time properties.

I. INTRODUCTION

Legacy code is a valuable resource because it comprises
knowledge and intellectual property (IP) which is often not
available in other forms anymore. In domains such as indus-
trial control and automation, this knowledge usually does not
become obsolete and thus can be reused for several decades
after it was written [1]. While algorithms and legacy code often
do not change over time, the platforms on which the code
can be executed steadily evolve and improve. Hardware and
operating systems are enhanced continuously and new require-
ments may arise, e.g., connectivity to new kinds of devices
and systems. To keep up with such changes and to exploit
new opportunities, legacy software has to be maintained and
adapted, e.g., to move to platforms with a better cost-benefit
ratio or to profit from the progress of multi-core architectures
properly [2].

Customers trust legacy code as it often has been in operation
for many years. Hence the core algorithms of the code should
not be changed during the evolution of legacy code. To
this end the core algorithms first need to be identified and
separated from platform-specific “glue code”. This task is very
challenging due to the fact that code typically grows over time.
That is, functionality is not necessarily placed in one code unit,
but it is distributed across the whole code base. Therefore,
it is often difficult to understand which code fragments are
used for a single functionality. To explore and understand a
code base efficiently is hence a crucial pre-condition for re-
use. To make things worse, specifications and documentation
are often missing and the original programmers are often no
longer available. Thus, (semi-)automatic systems and tools are
of great value for the exploration and identification tasks.

In comparison to software in other domains, industrial
control has to meet different requirements, e.g., regarding
real-time properties, reliability, and constrained resources [3],
[4]. General approaches for migration are thus often not
directly applicable and have to be adapted to satisfy these
requirements. In particular time-triggered behavior guarantees
can be challenging and need special attention.

In this paper, we present an approach to analyzing, struc-
turing and reusing legacy control software. It focuses on the
identification and encapsulation of control algorithms, which
represent core IP, and migrating these algorithms onto a next-
generation execution framework. The contributions of this
paper are

• tool-supported identification and isolation of the algo-
rithms in the legacy code that comprise relevant IP;

• enhancement and environment development to execute
the extracted legacy code on newer execution frameworks
ensuring future code adaptation and more flexible pro-
gram execution and maintenance. This includes moving
existing data exchange mechanisms to more flexible con-
cepts that can be maintained and replaced in the future;
and

• validation of the proposed solution in two dimensions,
functional correctness and timing behavior.

The chosen target execution framework is FASA (Future
Automation System Architecture [5]), which offers real-time
execution of control applications with advanced features such
as multi-core support, dynamic software updates, distributed
execution, and scalability from low-end to high-end platforms.
Our approach preserves not only the know-how of many
years of development, but also the corresponding testing and
validation. We present a semi-automatic validation of the
achieved solution by performing extensive functional testing
and validating the code execution with respect to real-time
properties.

A. Case Study

We will demonstrate the methods and tools on a case study
based on an existing control application. This application
consists of 342 kloc ADA code with a simulation and testing
framework for Windows. This framework also provides us
with validation criteria for our migration efforts in the form
of integration test cases. The development of the code started
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in 1990 with a team of eight developers and has been actively
maintained and extended ever since. The application has a
large number of input and output streams, which need to be
processed in real-time. Missing deadlines has critical conse-
quences. To take advantage of modern multi-core architectures
and to increase the maintainability this application is migrated
to the real-time execution platform FASA written in C++ on
RT-Linux (Linux with the Preempt-RT patch, which provides
reliable preemption of kernel tasks based on thread priorities).
At the same time no real-time guarantees must be violated
and the functionality needs to stay exactly the same, without
undesired side-effects introduced by the migration. Among the
difficulties we face in this task, we first need to establish where
the core control algorithms reside and to determine an efficient
and safe transformation that allows these parts to expose their
functionality to the FASA execution framework. In particular,
dead-locks and race-conditions, which are often encountered
when switching to a multi-threaded approach [6] are to be
avoided. Due to the complex structure, the use of numerous
global variables, and the lack of detailed documentation of
the legacy code, it is not straightforward how to tackle this
problem.

This paper is structured as follows. In Section II an overview
of existing approaches is given, followed by a description of
the methods applied to gain insights into the structure and
functionality of the code base in Section III. Subsequently,
Section IV presents how the legacy code is re-used and
Section V explains the validation of the resulting artifacts. We
summarize and discuss the methods and tools of this paper in
Section VI.

II. RELATED WORK

The problem of re-using legacy code has been addressed
from both the scientific and the practical perspective. This
section provides an overview of existing methods and their
differences to our approach.

Laguna and Crespo [7] performed a systematic literature-
based study on different practice and research challenges for
re-engineering of software product lines. The authors highlight
tools and processes for feature extraction, feature analysis,
feature-guided re-engineering, and meta model transforma-
tions. While we follow a similar general approach, none of
the reviewed tools and use cases were applicable for our case
study as ADA is not covered by them. In the last part of their
article, Laguna and Crespo identify open issues and research
challenges which include the analysis of the methodology
and process of legacy code re-engineering as well as feature
and model extraction from legacy code. We address these
challenges by a migration case study for a real-time control
application.

To support feature extraction and analysis, Anquetil and
Laval use code metrics such as number of lines of code,
cohesion, coupling and cyclomatic complexity to identify
which code parts require attention for re-engineering and
migration [8]. Anquetil and Laval analyze the relevance of
existing metrics during re-engineering using the evolution

of the Eclipse RPC platform as a test case. Their research
concludes that metrics such as cohesion and coupling do not
help the maintenance engineer. Similarly, the use of cyclic
dependencies information did not improve the re-engineering
results. A new metric called Bosch Maintainability Index
(BMI) is introduced by Thums and Quante [4] to facilitate the
task of understanding the code. The BMI uses questionnaire-
based input as well as a combination of metrics like the ones
described above for the first step of identifying relevant code
segments, by describing the benefit that code maintenance
would bring. This benefit is based on specific indicators.
Another technique applied in their work focuses on code
analysis to identify re-occuring segments and bad code smell
patterns.

A different direction is proposed with a model-based val-
idation method by Huselius et al. [9]. We cannot apply
this approach as no model of the existing legacy software
is available and the generation of a detailed model from
scratch is too time consuming. However, future developments,
especially for critical systems might benefit from model-based
approaches.

Once the important parts of the legacy code have been
identified and understood, there are different approaches to use
them on new platforms. Petcu et al. [10] discuss a structured
approach to determine which parts of the legacy software
can be exposed as services and how to give access to these
services. The authors distinguish three different approaches.
The black box approach builds adapters to the existing legacy
code. The white box approach analyzes the existing code and
extracts the relevant parts to be re- used as services. The
gray box approach combines wrapping and the white box
approach and has been described in several case studies. E.g.,
by Colosimo et al. [11] and De Lucia et al. [12] on re-using
legacy COBOL code with web-services or by Bernhart et
al. [18], where an old airport operation system in COBOL
is migrated using wrappers for intermediate systems running
in parallel for maximum safety. Our case study also applies a
gray box approach.

Razavian and Lago [13] state that industry practice often
does not apply a black, white or gray box approach when
moving to a service-oriented architecture. Instead the industry
defines first the goal to be achieved and then follows a
gradual migration path towards this goal. The authors define
the sequence of work as understanding the current state,
defining the goal, generating a gap analysis, architectural
recovery, legacy system wrapping, and application wrapping.
Additionally, Grimshaw et. al [14] address in general the
wrapping problem of combining legacy code generated in
various programming languages to form one system from
the users perspective. They mention various problems for the
resulting system without providing a specific methodology of
the re-engineering task. De Schutter and Adams [15] address
similar questions regarding aspect-oriented programming and
logic meta-programming for legacy business code. To this end,
four different use cases have been used, namely 1) reverse
engineering, 2) recovery of business logic, 3) wrapping of
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business applications, and 4) maintenance of legacy code.
Similarly to Grimshaw et al., De Schutter and Adams iden-
tified their solution as limited since legacy code often results
from heterogeneous development (mixture of programming
languages and environments).

Semi-automated code migration often uses abstract syntax
trees [16], [17]. Chavaria-Miranda et al. [16] use such an
approach for high performance computing applications written
in C/Fortran/MPI. Kontogiannis et al. [17] concentrate on
a comparison between manually migrated code and semi-
automated code migration based on abstract syntax trees. The
paper demonstrates the usefulness of abstract syntax trees
and also highlights the difficulties to achieve efficient code
which explains why this papers does not follow the described
approach.

III. UNDERSTANDING LEGACY CODE

Understanding the structure of the code base is an important
prerequisite for effective code maintenance and migration. In
particular, separating IP-relevant algorithms from platform-
specific glue code should be done early to reduce the amount
of code to be investigated in detail.

Legacy code often comes with little or no documentation of
its architecture or design. In order to understand the structure
of the code, developers must thus rely on the code itself. A
useful starting point is to study how the code is organized
in files and folders. Although this reveals partial information
about the code structure, it hides many dependencies of the
code and other parts of the system. In some cases, the names
of files and folders are of limited help: in our case study, the
code is organized in two folder levels with each folder having
a three-letter name; in Fortran, folder names are limited to
eight characters.

In particular, code written in languages that support static
initializers, subtyping, or precompiled libraries can not be fully
understood just by investigating the static call graph. As an
example, reading the code starting from the main function does
not reveal static initializations defined in other source files that
could be executed before or during the main function.

Our solution to understanding the control flow of legacy
software is twofold. First, we automatically extract the call
graph while executing the software. Then, the extracted call
graph is manually analyzed using a graphical representation.

A. Extracting the Call Graph

By extracting the call graph we want to find out which
functions are called during normal execution and in which
order. We do so by using a debugger. There are two kinds
of debuggers: hardware debuggers and software debuggers.
Hardware debuggers are typically used for embedded devices.
They provide an active connection between the main board
of the embedded device and the development PC. Through
this connection, they can trace program execution down to
individual CPU instructions. Software debuggers rely on sym-
bols added to the executable file by the compiler. Using
these symbols, software debuggers can step through programs

by individual lines in the source code, view the values of
variables, and manipulate control flow and data. Depending
on the application and its current execution environment one
or both options are viable. In our case study we use GDB (GNU
Project debugger) for two reasons. First, because we compile
the ADA sources with GCC which can create appropriate debug
information on the binary for inspection by GDB. Another
reason for using GDB is that our case study runs on a PC
without any dedicated hardware debugging interface.

In order to extract the call graph during execution, two
prerequisites are necessary. First, the source code must be
compiled with flags that leave debugging information (such
as variable names) in the compiled code and do not alter the
original execution order. Second, it must be ensured that the
execution covers a significant portion of the source code in
order to get meaningful results. Code coverage is a research
topic on its own in the context of software testing and thus, it
is out of the scope of this paper. For obtaining insight into the
control flow, it is usually sufficient to execute the code with
one or several representative integration test case.

In our case study, we are interested in function-level gran-
ularity as we want to structure the source code on a coarse
level only. To this end, it is sufficient to see which functions are
only called during startup, which functions are regularly called
during normal execution, and which functions are frequently
called by a variety of other functions, thus indicating an
auxiliary nature. Hence, we mainly use two features of GDB:
a) setting a breakpoint at the entry point of each function and
procedure that occurs in the source code and b) instructing
GDB to print the function name, file name, and line number
for each function (and, analogously, procedure). As mentioned
earlier, the code to be executed must be compiled with special
flags inhibiting optimization. For GDB, the GCC flags are -O0

and -ggdb.
As a prerequisite to Step a), we use a shell script that locates

the entry points of all functions and procedures in the source
code and generates input commands for GDB. The whole script
is shown in Appendix A. An example output of Step b) is
shown in Listing 1.

#0 main ([...]) at main.adb:840
#0 adainit () at main.adb:463
#0 <dbs_file_name___elabb> () at bdy/

dbs_file_name.adb:60

Listing 1. Example GDB output

It is a requirement for our approach that the program under
analysis eventually terminates. Non-terminating programs can
be terminated after a desired execution time or number of loop
iterations.

B. Analyzing the Call Graph

The sequence of function invocations generated in the
previous step can be analyzed in different ways. In our case
study, we are interested in the call graph of our program. This
representation allows us to visually identify clusters of related
functions. For creating graphical representations, we use the
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main() (b__cl_main_native.adb) main() (b__icstst_main_native.adb)

adainit() (b__icstst_main_native.adb)

<dbs_file_name___elabb>() (dbs_file_name.adb)

<dbs_attribute___elabb>() (gnl_universal_representation.ads)

<dbs_string_value___elabb>() (dbs_string_value.adb)

<dbs_definition___elabb>() (dbs_definition.adb)

<abb_test_suite___elabb>() (abb_test_suite.adb)

<sig_signals___elabb>() (sig_signals-mockup.adb)

<abb_sv_subsystem___elabb>() (abb_sv_subsystem-mockup.adb)

<dbs_manager___elabb>() (dbs_manager-mockup.adb)

<abb_sv_prot___elabb>() (abb_sv_prot.adb)

<hal_pio_port__sampling__native_test___elabb>() (hal_pio_port-sampling-native_test.adb)

dia_specific_services.get_fct_period() (dia_specific_services-mockup.adb)

<abb_test__custom___elabb>() (abb_test-custom.adb)

<abb_test__adaunit___elabb>() (abb_test-adaunit.adb)

<itt_specific_services___elabb>() (itt_specific_services-mockup.adb)

<abb_test__custom__signal_generator___elabb>() (abb_test-custom-signal_generator.adb)

icstst_main_native() (icstst_main_native.adb)

ics_protection_unit_tests_native.suite() (ics_protection_unit_tests_native.adb)

abb_test.adaunit.register_tests() (abb_test-adaunit.adb)

objects.create() (objects.adb)

objects.check() (objects.adb) abb_test.adaunit.set_up_case() (abb_test-adaunit.adb)

<objects__a_protected_object__createP>() (objects.adb)

objects.a_protected_object.create() (objects.adb)

abb_test.adaunit.tear_down_case() (abb_test-adaunit.adb)

dbs_manager.shutdown() (dbs_manager-mockup.adb)

dbs_manager.block_monitor() (dbs_manager-mockup.adb)

Fig. 1. Example Call Graph

GRAPHVIZ tool, an open source graph visualization software
that provides different layout options. Depending on the size
of the project it can be useful to carry out additional processing
steps before visualization. Graph analysis algorithms may be
used to identify a hierarchical structure or closely coupled
parts of the source code, which then can be visualized sepa-
rately. In our case study this was not necessary.

Before invoking GRAPHVIZ, the GDB output that was pre-
viously generated must be converted into the input format of
GRAPHVIZ, which defines the nodes and edges of the graph
in text form. We perform this conversion in a shell script with
frequent use of GAWK as shown in Listing 8.

There are several options for changing the layout of the
generated graph. For control flow analysis, the option “strict
digraph” is well suited because it combines multiple edges
between the same pairs of nodes and formats the graph as a
directed graph. An example call graph is shown in Figure 1.
It can be seen that clusters of functions and files can be
identified by analyzing the graph structure visually without
further automation. After a linear sequence of startup activities
(truncated from Figure 1), there are some independent sections
in the bottom left and bottom right part of the figure. In our
case study, analyzing the graph allowed us to separate code
that belongs to the testing infrastructure (bottom right part)
from code belonging to the actual algorithms (bottom left
part).

IV. RE-USING LEGACY CODE

Using the call graph analysis methods presented in the
previous section, the algorithms that constitute the core IP of
the legacy software can be identified. Then, these algorithms
can be extracted and converted such that they can be used in
a different runtime framework.

In our case study, the legacy code is written in ADA whereas
the desired runtime framework is written in C++. Therefore,
two options were considered:

1) Convert the selected ADA code into C++. Because of the
large code size, this would need to be done automatically.

2) Compile the selected ADA code and provide wrappers for
using it in a C++ project. The main disadvantage is that
the number of ADA experts is likely to further decrease,
which makes maintenance of the legacy algorithms more
costly should the need arise in the future.

The second option was chosen for several reasons:
• The legacy implementation of the algorithms have been

optimized, tested, debugged, and proven to work for many
years.

• There is currently no need to change these algorithms.
• The code is platform independent.
• Automatic code conversion poses a risk that the generated

code is not correct, maintainable, or meets its perfor-
mance goals.

A. C++ Wrappers for ADA Code

As mentioned in Section I, we want to execute the legacy
code on the FASA execution framework [5]. FASA provides a
component-based architecture with a few simple concepts. As
an example a component called Statistics, which is a container
for blocks and state data, is depicted in Figure 2. Blocks
(insert and average) are executable units that are sequential
and must always terminate upon invocation, i.e., they must be
non-blocking. Thus, developers must check the legacy code
to be wrapped for the presence of concurrent or blocking
code sections and fix them accordingly. Blocks communicate
with each other through typed ports (in, out), which can be
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connected through channels (not shown in Figure 2) to form
applications. This modular nature of components in FASA
suggests a process for writing wrappers for the legacy code:

1) Combine any global variables used in the legacy code
into a record (struct) and add this record as additional
parameter to the corresponding legacy functions. The
FASA components that wrap the legacy functions store
this record as part of their state and pass it to the
respective legacy functions. We assume here that the
legacy code and its execution in FASA is sequential;
concurrency would involve further investigations.

2) Compile the legacy code into a shared library, leaving
out all unnecessary code, which has previously been
identified as described in Section III.

3) For each function in the legacy code, create a new FASA
wrapper block. The only action of the block is to read
the input port(s), call the corresponding ADA function
with the previously read inputs, and write the result of the
ADA function to the output port(s). If the legacy function
accesses global variables, create additional ports in order
to pass this data to other blocks.

4) Aggregate blocks into components based on their coher-
ence: closely related blocks should be in the same compo-
nent, unrelated blocks should be in separate components.

In the legacy code, the names of the functions that should
be migrated must be exported. In ADA this is done through
an Export pragma in the header, as shown in Listing 2. The
corresponding body is shown in Listing 3.

package Test is
type Int32 is range -2**31..2**31-1;
function f (x: Int32) return Int32;
pragma Export (C, f, "_ada_f");

end Test;

Listing 2. Example ADA header

package body Test is
function f (x: Int32) return Int32 is
begin
return x;

end f;
end Test;

Listing 3. Example ADA body

Statistics

insert

average out: float

state

out: int32_tin: int32_t

Fig. 2. Example FASA Component

The wrapper code in C++ remains minimal. As shown in
Listing 4, the functions used from the legacy code must be
declared using the keyword extern such that they can be
called from C++ code.

extern "C"
{
int32_t _ada_f (int32_t param1);

}

void QoS::operator() ()
{
*out = _ada_f (*in);

}

Listing 4. Example C++ wrapper

In our case study, the biggest hurdle in the process was
compiling and linking. It took a significant amount of effort
to collect all required settings for the compiler and the linker
such that we could call ADA functions from the C++ component
code, which itself is compiled as a shared library in FASA.
Some useful settings for the ADA project file (.gpr) are shown
in Listing 5.

project My_Library is
for Library_Name use "My_Library";
for Library_Kind use "relocatable";
for Library_Dir use "lib";
for Library_Interface use ("my_main");
for Library_Auto_Init use "true";
for Object_Dir use ".tmp";

package Compiler is
for Driver ("Ada") use "g++";

for Default_Switches ("ada") use
("-fstack-check", "-gnat12",
"-Wall","-gnatwM", "-gnatwR",
"-gnatQ", "-gnatp", "-gnatn",
"-O2");

end Compiler;

package Binder is
for Default_Switches ("ada") use
("-d32m", "-n");

end Binder;
end My_Library;

Listing 5. ADA compiler/linker settings

When building the C++ code, the shared library containing
the legacy code can then be linked (using the “-l” option for
GCC). Also, the standard ADA library must be linked with the
C++ code, as shown in Listing 6.

gcc component.cc -lgnat-2014
-lMy_Library -L/usr/local/lib

Listing 6. GCC settings for linking a shared library in ADA

The result of our wrapping efforts is a component that
executes legacy code on the FASA platform. This allows the
algorithms in the legacy code to communicate transparently
to other components, which can be executed on the same
CPU core, on a different CPU core, or even on a different
computer on the network [5]. Thus, we have moved existing
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data exchange mechanisms to a flexible concept that can be
maintained and exchanged in the future.

B. Integration into the Execution Framework

Having wrapped the legacy code as components we can
now integrate them into the execution framework FASA. As a
prerequisite, an application must be created from the desired
blocks. In FASA, an application is a directed graph whose
nodes are blocks; this graph is implied by the data flow
between the blocks and their ports.

FASA uses offline scheduling, i.e., the schedule is static
and computed before the system goes into operation. The
PASA tool (Partitioning And Scheduling Algorithms [19]) is
used for calculating such static schedules. To this end, PASA
maps an application to a set of execution resources, which
can be locally distributed (i.e., different cores in one CPU)
or physically distributed (i.e., nodes in a network), taking
into account the respective communication latencies between
blocks.

Figure 3 shows a cascaded PID control application as an
example. It can be seen from the graph that the application
contains concurrent execution branches. If two execution re-
sources with low communication latency between them are
available, our offline scheduler may compute the schedule
shown in Figure 4. This schedule exploits the parallelism in the
application, the sequential behavior of individual blocks (cf.
Section IV-A), and caters for synchronization at the M1:Offset
block (which needs the inputs of I1:Pressure) and at P2:PidCC
(which needs the inputs of P1:PidCC, M1:Offset, and I2:Track).

bool

I1:

Fieldbus In

Temp

Pressure

I2:

Ethernet

Track

P1:

PID

Controller

PidCC

O1:

Fieldbus Out

Valve

P2:

PID

Controller

PidCC

M1:

Maths

Library

Offset

float
float

fl
o

a
t

float

fl
o

a
t

Fig. 3. Example Application

t0 t1

M1:Offset P2:PidCC O1:Valve

t0 t1

I1:Temp P1:PidCCI1:Pressure

I2:Track

Fig. 4. Example Schedule for the Application in Figure 3

Using FASA, legacy applications can be transparently exe-
cuted on either one or more execution resources. The runtime
of applications can be decreased by exploiting concurrent
branches in the control flow and consequently executing blocks

on different execution resources in parallel. Alternatively,
FASA allows developers to execute larger applications or
multiple instances of the same application on a parallel system.

When scheduling legacy applications on FASA, it must be
ensured that no race conditions or deadlocks can occur. Race
conditions can be avoided by ensuring that blocks of the same
component are not executed in parallel because they could
share state data. Deadlocks are not possible in FASA, provided
that the code in each block is non-blocking, which is usually
the case for control algorithms.

V. VALIDATION

To show that the migration of the legacy code to the FASA
platform according to our approach is successful, we validated
the functional correctness of a reference implementation of our
new solution as well as correct timely behavior, according to
the application-specific real-time requirements.

A. Reference Implementation

We implemented a reference solution of the migrated appli-
cation on an Aaeon industrial PC, which has an Intel i7 2.3
GHz Quad core processor and 2 GB RAM. The used real-time
operating system is RT-Linux (kernel 3.4.12).

In contrast to our starting point, in which the input for the
legacy ADA code was generated by a non-real-time simulation
framework in software, the input in our target solution is
provided as data streams sent from an external testing tool
to the reference implementation via the network. Such a setup
is necessary to test real-time properties of the whole system,
including the processing of network traffic.

To this end, network traffic has to be received and delivered
in real-time to the FASA application that wraps the original
code. Since FASA does not provide a concept for handling
event-driven tasks, such as processing network traffic, we
use an approach that has been proposed by Eidenbenz et
al. [20]. The approach relies on a non-FASA process that
handles the network interrupts and communicates with the
FASA application through inter-process communication, i.e.,
it puts the data into shared memory, where FASA blocks of
a specific type, so-called proxies, fetch the data periodically
and deliver it to the consuming FASA blocks. In our case, the
proxies deliver the input data to the ADA code wrappers, which
prepare the data and call the original functions with the data.
Whereas the output of the legacy code was processed by the
simulation and testing framework in the original solution, the
output in the reference implementation was delivered to the
network according to the delivery of input to the ADA code,
namely via ADA wrappers, FASA proxies, and an external
transmission process. Refer to the right-hand side of Figure 5
for an illustration of the reference implementation and testing
architecture.

B. Functional Validation

For functional validation, we employed regression testing:
we applied the same set of test cases that were used for
functional validation in the original simulation framework to
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Tx Proxy

Rx ProxyRx Process Rx Proxy

Tx ProxyTx Process

Legacy 

Code (ADA)

Rx ProxyWrapper

Tx ProxyWrapper

FASA

Shared 

Memory

External 

Testing

Tool

Reference Implementation

Ethernet

Network

PC 2PC 1

Fig. 5. Test setup for validation of reference implementation containing two RT-Linux PCs, one hosting the testing tool and one running the reference
implementation. The arrows indicate the direction of the data flow.

the new solution. Doing so enabled us to compare the behavior
of the new solution to the behavior of the original solution and
to make sure there are no regressions, i.e., no new software
bugs, introduced during the migration process. In our case,
the simulation framework included the test-cases as AUnit
tests1. Each of these tests defines input sequences to the ADA
code and checks whether the monitored output corresponds
to the expected values. In order to establish the same test
cases on the new solution, it was necessary to migrate, i.e.,
re-implement these tests, so that they can be run from an
external testing machine. As the input and output data of
the new solution is mapped to Ethernet streams according
to an industry standard, we could harness an existing testing
tool for the purpose of the validation. The original test cases
were thus migrated to this external testing tool. The testing
tool generates Ethernet streams according to the test cases,
transmits them across the network as input for the reference
implementation; simultaneously, the tool monitors and verifies
the output streams that are emitted by our device under test.

We executed several types of tests corresponding to relevant
use cases of the controller. Each type comprises of testing
the system with k input streams, producing n outputs, where
n is a function of k that is determined by the tested use
case. For a use case, we tested the behavior of the reference
implementation with typical values of k and n as well as the
highest values of k and n that the controller should be able to
handle.

The results of the validation show that the migration to a
FASA environment was successful: in all functional test cases,
the monitored output of our new solution corresponded to
the expected output. The new FASA version of our solution
behaves like the legacy solution in all tested cases.

Note that full code coverage was not a focus of our migra-
tion effort, and we did not measure the code coverage achieved
by our validation. In terms of the ADA code, however, we can

1http://libre.adacore.com/tools/aunit/

expect a level of code coverage that is very close to the level
achieved in the original validation of the legacy code due to
the fact that we conducted the same tests, albeit migrated.

C. Real-time Properties

For validation of correct timing behavior, we added time
measurements to the relevant test cases and measured the
reaction times of the controller solution. The start time of each
measurement was taken in the sender thread when issuing
the call to send the packet to the network card; the end
time was set to the time when the network card received
the corresponding packet containing the expected signal. For
this purpose, we adapted the testing tool and harnessed the
hardware timestamping feature of the network card, which
provides nanosecond accuracy.

For validating the real-time properties, we ran the tests
again, augmented with time measurements. Each test case
was executed several hundred times. The analysis of the
time measurements showed that the reaction times of the
new controller solution were within the ranges stated in the
respective requirements specifications in all tested use cases
and for all tested k and n.

VI. CONCLUSIONS

In this paper, we have described the techniques and methods
applied for the migration of existing control applications to a
new software and hardware platform. We have shown in our
case study that it is possible to effectively migrate legacy code
to a modern multi-core execution environment, even if the
legacy code is 25 years old and the original deployment and
runtime environment of the legacy program differs substan-
tially from nowaday’s environments. Clearly, not every legacy
application and target environment calls for the same migration
method; however, the strategic three-steps approach presented
in this paper promises a successful migration in most cases.
The three generic steps are:
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1) identification and isolation of control algorithms with
tools such as GDB and GRAPHVIZ;

2) wrapping or adapting of extracted code to embed it in
a modern, future-proof deployment and runtime environ-
ment, such as FASA;

3) validation of new solution by re-using original, potentially
migrated validation tests.

A. Lessons Learned

Our case study has provided us with some valuable insights.
To start with, understanding how legacy code is structured and
what the IP-relevant parts are requires substantial effort. Tool
support is helpful because it can provide important clues, but
it cannot replace manual code analysis in the general case.
Developing the call graph extraction scripts and extracting the
business logic consumed around 20 % of the project time.

Wrapping legacy code seems like a straight forward activity.
The devil is, however, in the details. Building ADA code into
a library that can be linked with C++ code was the most time-
consuming activity in our case study (around 50 %). Little
documentation for compiling and linking is available on the
Internet in the form of Q&A discussions or tutorials for
slightly related cases. The lack of comprehensive documen-
tation motivated us to present detailed linker and compiler
settings in this paper.

Integrating the wrapped code into the FASA runtime re-
quired around 10 % of the project time. The combination of
GCC and GDB is very helpful for the integration of legacy code
because these tools can be used for a variety of languages. In
particular, GDB provides a uniform debugging interface to both
the ADA and the C++ parts of the system.

The case study has been concluded by showing the fea-
sibility of the presented approach to the stakeholders of
our research project. They have provided us with positive
feedback, in particular on the speed (ca. 8 person weeks of
effort) and quality with which we managed to migrate the
legacy software onto a modern platform. In particular, the
possibility of utilizing multi-core CPUs and thus, to make the
software scalable, was appreciated. The extensive validation,
which consumed around 20 % of the project time, helped to
convince the stakeholders of our solution.

B. Future Work

There are still many significant challenges in the area of
migration of legacy code to other programming languages,
operating systems, and hardware setups. In particular, more
work is needed to make these processes easier and more cost
efficient. To this end the identification of reachable code in
legacy systems can benefit from systematic parametrization
engines which can adapt to given scenarios and code segments.
Additionally, a mechanism is required to generate representa-
tive test cases that help to derive the relevant code segments
for translation or wrapping purposes. Better tool support for
the approach discussed in this paper would include automatic
generation of breakpoints for all functions and procedures and

the fully automatic extraction of directed call graphs using the
described underlying techniques.

Also the validation of migrated legacy code needs further
research. Here, the generation of test cases (as for the identifi-
cation of relevant code segments) need to be automated as well
as the comparison of the results of the original and the new
systems. Furthermore, code coverage for each test case should
be investigated to assess the quality of the overall validation.

Beside the functional aspects, also non-functional aspects
like run-time requirements need to be integrated into an
automatic procedure. Thus, for the code analysis as well as
for the validation work, precise and detailed time analysis
is required to ensure the real-time behavior of the migrated
solution.
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APPENDIX
BASH SCRIPTS

These scripts show by an example how to extract the call
graph from an ADA program and plot a visualization of it as
explained in Section III.

A. Call Graph Extraction

#!/bin/bash
FASA_PATH=$(readlink -f ..)
WORKING_DIR=‘pwd‘

# preparing GDB commands file
echo "set breakpoint pending on" > gdb-

commands.txt
echo "" >> gdb-commands.txt

# creating list of ada files; ignore file
dbs_text_io and others because they are
irrelevant

cd ..
find icssys -name *.adb | grep -v dbs_text_io

| grep -v gnl_ | grep -v pdf_ >
$WORKING_DIR/tmp-adafiles

find subsystem_test -name *.adb >>
$WORKING_DIR/tmp-adafiles

# iterate through list of files
while read l; do
# find procedures, ignore lines starting with

a comment

# file names with path
grep -v ’^--’ $l | grep -n "procedure" | gawk

-v filename=$l -v path=$FASA_PATH ’BEGIN
{ FS=":"} { print "b " path "/" filename

":" $1; print "commands"; print "silent"
; print "bt 1"; print "c"; print "end";
print ""; }’ >> $WORKING_DIR/gdb-commands
.txt

#repeat line 24, replacing "procedure" with "
function"

done < $WORKING_DIR/tmp-adafiles

cd $WORKING_DIR
rm tmp-adafiles

echo "run" >> gdb-commands.txt

gdb -batch -x gdb-commands.txt ../
subsystem_test/obj/CU_native/Debug/ada/
icstst_main_native > gdb-output.txt

Listing 7. Call Graph Extraction

B. Call Graph Visualization

#!/bin/bash
DOT_FILE=graph.dot
OUTPUT_FORMAT=pdf

# extract function names
cat gdb-output.txt \
| grep at | grep "#0" | gawk ’BEGIN { FS=":" }

{ print $1 }’ | gawk ’BEGIN {FS="#0"} {
print $2 }’ | gawk ’BEGIN {FS="/"} {print
$1 $NF }’ | gawk ’{print $1 "() (" $NF ")"
} ’> tmp.txt # | gawk ’{print $2}’

# create dot file
echo "strict digraph ABBSS {" > $DOT_FILE
echo "graph [ fontcolor=black, fontsize=14,

ratio=0.7071 ];" >> $DOT_FILE
echo "node [color=azure, style=filled, shape=

note]; \"main() (b__cl_main_native.adb)\"
[color="cornsilk"];" >> $DOT_FILE

cat tmp.txt | gawk -v q="\x22" ’{ if (tmp!="")
{print q $0 q ";";} printf q $0 q "->";

if ((getline tmp) > 0) { print q tmp q ";\
n" q tmp q "->"; } else { print "end"; }}’
| head -n -1 >> $DOT_FILE

echo "}" >> $DOT_FILE

dot -T$OUTPUT_FORMAT $DOT_FILE >graph.
$OUTPUT_FORMAT

rm $DOT_FILE
rm tmp.txt

Listing 8. Call Graph Visualization
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